
MONTEREY, CALIFORNIA

DISSERTATION

LEARNING FROM NOISY AND DELAYED REWARDS:
THE VALUE OF REINFORCEMENT LEARNING TO

DEFENSE MODELING AND SIMULATION

by

Jonathan Alt

September 2012

Dissertation Supervisor: Christian J. Darken

This thesis was performed at the MOVES Institute.
Approved for public release; distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington,
VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
September 2012

3. REPORT TYPE AND DATES COVERED
Dissertation

4. TITLE AND SUBTITLE: Learning from Noisy and Delayed Rewards:
The Value of Reinforcement Learning to Defense Modeling and Simulation

5. FUNDING NUMBERS
NA

6. AUTHOR(S): Jonathan K. Alt

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

9.SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES: The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government. IRB Protocol Number: NA

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE
A

13. ABSTRACT (maximum 200 words)
Modeling and simulation of military operations requires human behavior models capable of learning from experi-
ence in complex environments where feedback on action quality is noisy and delayed. This research examines the
potential of reinforcement learning, a class of AI learning algorithms, to address this need. A novel reinforcement
learning algorithm that uses the exponentially weighted average reward as an action-value estimator is described.
Empirical results indicate that this relatively straight-forward approach improves learning speed in both benchmark
environments and in challenging applied settings. Applications of reinforcement learning in the verification of the re-
ward structure of a training simulation, the improvement in the performance of a discrete event simulation scheduling
tool, and in enabling adaptive decision-making in combat simulation are presented. To place reinforcement learning
within the context of broader models of human information processing, a practical cognitive architecture is devel-
oped and applied to the representation of a population within a conflict area. These varied applications and domains
demonstrate that the potential for the use of reinforcement learning within modeling and simulation is great.

14. SUBJECT TERMS
reinforcement learning, architecture, agents, autonomous systems

15. NUMBER
OF PAGES
321
16. PRICE CODE

17. SECURITYCLASSIFICATION
OF REPORT
Unclassified

18. SECURITYCLASSIFICATION
OF THIS PAGE
Unclassified

19. SECURITYCLASSIFICATION
OF ABSTRACT
Unclassified

20. LIMITATION OF
ABSTRACT
UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

i

Approved for public release; distribution is unlimited

LEARNING FROM NOISY AND DELAYED REWARDS: THE VALUE OF
REINFORCEMENT LEARNING TO DEFENSE MODELING AND SIMULATION

Jonathan K. Alt
Lieutenant Colonel, United States Army

B.S., United States Military Academy, 1993
M.Ed., University of Georgia, 2001

M.S., Naval Postgraduate School, 2006

Submitted in partial fulfillment of the
requirements for the degree of

DOCTOR OF PHILOSOPHY IN
MODELING, VIRTUAL ENVIRONMENTS, AND SIMULATION (MOVES)

from the

NAVAL POSTGRADUATE SCHOOL
September 2012

Author:
Jonathan Keith Alt

Approved By:
Christian J. Darken, PhD
Associate Professor
Department of Computer Science
Dissertation Supervisor

Michael M. McCauley, PhD
Research Professor
Department of Operations Research

Michael Jaye, PhD
Associate Professor
Department of Defense Analysis

Arnold Buss, PhD
Research Assistance Professor
Modeling Virtual Environments and
Simulation

Jeffrey Appleget, PhD
Senior Lecturer
Department of Operations Research

Approved By:
Peter Denning, PhD, Professor and Chair, Department of Computer Science

Approved By:
Douglas Moses, Associate Provost for Academic Affairs

ii

ABSTRACT

Modeling and simulation of military operations requires human behavior models capable

of learning from experience in complex environments where feedback on action quality is

noisy and delayed. This research examines the potential of reinforcement learning, a class

of AI learning algorithms, to address this need. A novel reinforcement learning algorithm

that uses the exponentially weighted average reward as an action-value estimator is de-

scribed. Empirical results indicate that this relatively straight-forward approach improves

learning speed in both benchmark environments and in challenging applied settings. Ap-

plications of reinforcement learning in the verification of the reward structure of a training

simulation, the improvement in the performance of a discrete event simulation scheduling

tool, and in enabling adaptive decision-making in combat simulation are presented. To

place reinforcement learning within the context of broader models of human information

processing, a practical cognitive architecture is developed and applied to the representation

of a population within a conflict area. These varied applications and domains demonstrate

that the potential for the use of reinforcement learning within modeling and simulation is

great.

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

TABLE OF CONTENTS

I. INTRODUCTION . 1
A. MOTIVATING PROBLEM . 1

B. DEFINITIONS AND TERMINOLOGY 3

C. CHALLENGES OF ADAPTIVE AGENT DECISION MAKING IN
ANALYTIC AND TRAINING SIMULATIONS 12

D. DISSERTATION CONTRIBUTIONS AND ORGANIZATION 13

II. REINFORCEMENT LEARNING AND COGNITIVE ARCHITECTURES
FOR AUTONOMOUS AGENT DECISION-MAKING 17
A. REINFORCEMENT LEARNING 18

1. Temporal Differencing, Monte-Carlo, and TD(λ) Methods . . 22
a. Q-learning and Q(λ) 24
b. SARSA and SARSA(λ) 26

2. Exporation and Exploitation 29
a. ε-Greedy . 30
b. Boltzmann Exploration 32
c. Interval Estimation and Upper Confidence Bound . . . 33
d. Other Recent Approaches 33

3. Measures of Learning Performance 35
a. Convergence . 35
b. Speed of Convergence 35
c. Regret . 35
d. Approximation Error 36
e. Frequency of Optimal Action Selection 37

B. COGNITIVE ARCHITECTURES 37
1. Considerations in Cognitive Modeling 38
2. Recognition-Primed Decision Making and Goals, Operators,

Methods, Selectors . 43
3. Review of Cognitive Architectures 45

a. Active Components of Thought 45
b. State Operator and Results 47
c. Connectionist Learning with Adaptive Rule Induction

On-line . 49
4. Learning in Cognitive Architectures 51
5. Agent Based Models, Cognitive Modeling, and Complexity . . 52

v

C. A SAMPLE OF DEPARTMENT OF DEFENSE SIMULATION MOD-
ELS . 64
1. Combined Arms Analysis Toolkit for the Twenty-first Century 64
2. UrbanSim . 65
3. Assignment Scheduling Capability for Unmanned Aerial Sys-

tems . 66
4. Cultural Geography Model 66

D. SUMMARY . 68

III. DIRECT-Q COMPUTATION . 69
A. DIRECT-Q COMPUTATION . 69

B. BENCHMARK PROBLEMS . 76
1. N-Arm Bandit . 77
2. Two-Arm Bandit . 79
3. Gridworld . 81
4. Summary . 87

C. PHYSICAL TRAVELING SALESMAN PROBLEM 88
1. Problem Specification . 89
2. RL Formulation . 92
3. Empirical Results . 93
4. Insights from the Physical Traveling Salesman Problem 95

D. PACMAN . 96
1. Problem Specification . 97
2. RL Formulation . 97
3. Empirical Results . 99
4. Insights from PACMAN . 100

E. INSIGHTS ON DQ-C . 101

IV. APPLICATIONS . 103
A. UNMANNED AERIAL VEHICLE ASSIGNMENT AND SCHEDUL-

ING PROBLEM . 103
1. Assignment Scheduling Capability for UAVs 104
2. Problem Specification . 104
3. RL Formulation and Empirical Results 104

a. Case 1 Formulation 105
b. Case 1 Empirical Results 105
c. Case 2 Formulation 107
d. Case 2 Empirical Results 108

4. Insights on the Use of Reinforcement Learning in a Schedul-
ing Tool . 111

vi

B. ADAPTIVE BEHAVIOR IN COMBATXXI 112
1. Case 1 Formulation . 114
2. Case 1 Empirical Results . 115
3. Case 2 Formulation . 116
4. Case 2 Empirical Results . 118
5. Insights on the Use of Reinforcement Learning in Combat

Simulations . 119

C. VERIFYING THE REWARD STRUCTURE IN TRAINING SIMU-
LATION . 120
1. Problem Specification . 121
2. RL Formulation and Empirical Results 122

a. Case 1 Formulation 122
b. Case 1 Empirical Results 123
c. Case 2 Formulation 129
d. Case 2 Empirical Results 130
e. Case 3 Formulation 134
f. Case 3 Empirical Results 135

3. Insights on the Verification of Training Simulations 142

D. CONCLUSIONS . 143

V. DEVELOPMENT OF A PRACTICAL COGNITIVE ARCHITECTURE 145
A. GENERAL FRAMEWORK AND IMPLEMENTATION DESCRIP-

TION . 145
1. Perception . 147
2. Meta-cognition . 148
3. Long-term Memory . 148
4. Action Selection . 149

B. GENERIC IMPLEMENTATION DESCRIPTION 149

C. COGNITIVE ARCHITECTURES TO REPRESENT GROUP COG-
NITION . 154
1. Cognitive Structures . 155
2. Cognitive Processes . 157
3. Sentiment . 158
4. Group Behavior and Deviance 159

D. APPLICATION OF THE REINFORCEMENT LEARNING AND A
PRACTICAL COGNITIVE ARCHITECTURE WITHIN THE CUL-
TURAL GEOGRAPHY MODEL 160
1. Initial Application of Reinforcement Learning within CG . . . 161
2. Representing Theory of Planned Behavior 163
3. Incorporation of a Cognitive Architecture 166

vii

E. CONCLUSIONS . 167

VI. CONCLUSION . 169
A. SUMMARY OF CONTRIBUTIONS 169

1. Direct-Q Computation . 169
2. Enabling Adaptive Behavior in a Combat Simulation 170
3. Maximizing the Value of a UAV Schedule from a DES 170
4. Verification of Reward Structure in Training Simulation 171
5. Practical Cognitive Architecture 171

B. FUTURE RESEARCH . 172

Appendix A: First-Visit and Every-Visit Monte-Carlo 175

Appendix B: Comparison of ε-greedy and Boltzmann Exploration 177

Appendix C: Bayesian Optimal Policy for N-Arm Bandit 183

Appendix D: Analysis of DQ-C and TD(λ) . 187

Appendix E: PTSP Maps . 193

Appendix F: Full ASC-U Formulation . 203

Appendix G: Learned State-Action Values for UrbanSim 209

Appendix H: Strategy Level Policies by Algorithm UrbanSim 265

Appendix I: Additional Benchmarking Results 269

LIST OF REFERENCES . 283

INITIAL DISTRIBUTION LIST . 293

viii

LIST OF FIGURES

Figure 1. Agent environment interaction. 3
Figure 2. Simple two state MDP. 4
Figure 3. Agent-environment interaction in reinforcement learning. 8
Figure 4. Information processing model of human cognition. 11
Figure 5. Information processing model of human cognition. 39
Figure 6. Recognition primed decision making 1231212312 44
Figure 7. ACT-R top-level conceptual diagram. 46
Figure 8. SOAR top-level conceptual diagram. 48
Figure 9. CLARION top-level conceptual diagram. 50
Figure 10. Cultural geography conceptual model. 67
Figure 11. Top three performers for 10-arm bandit benchmark domain, for σ2 =

1.0 and σ2 = 0.0, 250 trials and 500 replications. Mean total regret is
plotted for each algorithm policy pair along with associated standard
error. 78

Figure 12. Sample gridworld domain. 82
Figure 13. Top three performers for deterministic and stochastic 5x5 gridworld

task, 500 trials and 1000 replications. Mean total utility for each is
plotted for each algorithm policy pair along with associated standard
error. 83

Figure 14. Top three performers for deterministic and stochastic 10x10 grid-
world task, 500 trials and 1000 replications. Mean total utility for
each is plotted for each algorithm policy pair along with associated
standard error. 84

Figure 15. Top three performers for 5x5 gridworld, with oscillating transition
matrix and a dynamic goal, 250 trials and 500 replications. Mean
utility is plotted for each algorithm policy pair along with associated
standard error. 87

Figure 16. Sample map for physical traveling salesman problem. 89
Figure 17. Mean waypoints obtained across all maps by top three performing

algorithm and policy pairs. 94
Figure 18. Mean time per waypoints obtained across all maps by top three per-

forming algorithm and policy pairs. 95
Figure 19. Medium sized classic Pacman map. 96

ix

Figure 20. Mean percent of board cleared by all algorithm and policy pairs for
best performing parameter settings. 100

Figure 21. Case 1 mission area timing. 106
Figure 22. Case 1 results. 107
Figure 23. Case 2 mission area timing. 109
Figure 24. Case 2 comparison mean value per iteration for each algorithm. 111
Figure 25. Typical modeling and simulation agent. 113
Figure 26. Modeling and simulation agent based on reinforcement learning. . . . 114
Figure 27. Route selection scenario COMBATXXI. 115
Figure 28. Route selection scenario COMBATXXI. 116
Figure 29. Formation selection scenario COMBATXXI. 117
Figure 30. Formation selection scenario COMBATXXI. 119
Figure 31. UrbanSim player interface. 121
Figure 32. Mean and standard error of the final score of a 15 turn game following

30 replications of each of the 27 strategy combinations. 124
Figure 33. Mean and standard error of the final score of a 15 turn game following

30 replications of each of the 162 strategy combinations. 125
Figure 34. Regret per turn and mean total regret for 162-arm bandit formulation

of UrbanSim constant exploration rate. 127
Figure 35. Regret per turn and mean total regret for 162-arm bandit formulation

of UrbanSim using decaying exploration rate. 128
Figure 36. Regret per 15 turn game and total regret over 1000 games with deci-

sions made by agent by turn. 131
Figure 37. Mean score over 1000 games with decisions made by agent by turn

for each algorithm policy pair. 132
Figure 38. End of game score for 1000 learning games and 300 greedy games. . . 136
Figure 39. Practical cognitive architecture full conceptual model. 146
Figure 40. top-level view of DES cognitive architecture. 150
Figure 41. Kenrick’s updated to Maslow’s hierarchy of needs. 153
Figure 42. Analysis methodology for close formed use case. 161
Figure 43. Population agent functional decomposition. 162
Figure 44. Distribution of threat actions. 163
Figure 45. Map 2 for physical traveling salesman problem. 193
Figure 46. Map 3 for physical traveling salesman problem. 194
Figure 47. Map 4 for physical traveling salesman problem. 195
Figure 48. Map 5 for physical traveling salesman problem. 196

x

Figure 49. Map 6 for physical traveling salesman problem. 197
Figure 50. Map 7 for physical traveling salesman problem. 198
Figure 51. Map 8 for physical traveling salesman problem. 199
Figure 52. Map 9 for physical traveling salesman problem. 200
Figure 53. Map 10 for physical traveling salesman problem. 201
Figure 54. Performance of DQ-C in 5x5 deterministic grid world over γ by α

paired with ε-greedy. 269
Figure 55. Performance of DQ-C in 5x5 deterministic grid world over γ by α

paired with Boltzmann exploration. 270
Figure 56. Performance of DQ-C in 5x5 deterministic grid world over γ by ε

paired with ε-greedy with α = 0.6. 271
Figure 57. Performance of DQ-C in 5x5 deterministic grid world over γ by τ

paired with Boltzmann exploration with α = 0.6. 272
Figure 58. Performance of SARSA(λ) in 5x5 deterministic grid world over γ by

λ paired with ε-greedy. 273
Figure 59. Performance of SARSA(λ) in 5x5 deterministic grid world over γ by

λ paired with Boltzmann exploration. 274
Figure 60. Performance of SARSA(λ) in 5x5 deterministic grid world over γ by

α paired with ε-greedy with α = 0.6. 275
Figure 61. Performance of SARSA(λ) in 5x5 deterministic grid world over γ by

τ paired with Boltzmann exploration with α = 0.6. 276
Figure 62. Performance of DQ-C in noisy 10-arm bandit over γ by α paired with

ε-greedy. 277
Figure 63. Performance of DQ-C in noisy 10-arm bandit over γ by α paired with

Botzmann exploration. 278
Figure 64. Performance of DQ-C in noisy 10-arm bandit over γ by τ paired with

ε-greedy, α = 0.6. 279
Figure 65. Performance of DQ-C in noisy 10-arm bandit over γ by τ paired with

Botzmann exploration, α = 0.6. 280

xi

THIS PAGE INTENTIONALLY LEFT BLANK

xii

LIST OF TABLES

Table 1. Regret results for algorithms coupled with epsilon−greedy, β, for
10-arm bandit benchmark task following 250 trials with 500 replica-
tions with σ2=0 on the reward signal. SARSA with ε-greedy pro-
vided best result. 79

Table 2. Regret results for algorithms coupled with epsilon−greedy, β, for
10-arm bandit benchmark task following 250 trials with 500 replica-
tions with σ2=1 on the reward signal. DQ-C with β provided best
results. 79

Table 3. Regret results for algorithms coupled with epsilon− greedy and β
for 2-arm bandit following 250 trials with 500 replications with σ2 =
0, δ = µ∗ − µ1 = 0.8 and 0.2. DQ-C with β provides best results in
δ = 0.8 case, Q-learning and SARSA paired with ε− greedy in the
δ = 0.2 case. 80

Table 4. Regret results for algorithms coupled with epsilon − greedy and
β for 2-arm bandit following 250 trials with 500 replications with
σ2 = 1, δ = µ∗ − µ1 = 0.8 and 0.2. Q(λ) paired with β resulted in
the best performance for δ = 0.8 and DQ-C paired with β for δ = 0.2. 81

Table 5. Mean goals achieved for deterministic (top) and stochastic (bottom)
5x5 grid world following 500 trials with 1000 replications with single
reward upon attainment of the goal state by algorithm and policy. DQ-
C with ε-greedy obtained the best result in each case. 85

Table 6. Mean goals achieved for deterministic (top) and stochastic (bottom)
10x10 grid world following 500 trials with 500 replications with sin-
gle reward upon attainment of the goal state by algorithm and policy.
DQ-C with ε-greedy obtained the best result in each case. 86

Table 7. Scenario configuration parameters for ASC-U Case 2. 110
Table 8. Recommended strategies following 1000 training sessions by algo-

rithm policy pair. 126
Table 9. Recommended strategies following 500 training sessions by algo-

rithm policy pair using a decaying exploration strategy. 129
Table 10. Learned policy for Battalion Commander by turn for 15 turn Urban-

Sim game using DQ-C. 133
Table 11. Learned policy for all agents by turn for 15 turn UrbanSim game us-

ing DQ-C, ε-greedy. 134
Table 12. Learned policy for all agents by turn for 15 turn UrbanSim game us-

ing DQ-C, Boltzmann. 134

xiii

Table 13. Actions available by agent each turn . 135
Table 14. Learned action policy for all agents by turn for 15 turn UrbanSim

game using DQ-C, ε-greedy. 137
Table 15. Learned actions for all agents from turn 1-3 in 15 turn UrbanSim

game using DQ-C, ε-greedy. 138
Table 16. Learned actions for all agents from turn 4-6 in 15 turn UrbanSim

game using DQ-C, ε-greedy. 139
Table 17. Learned actions for all agents from turn 7-9 in 15 turn UrbanSim

game using DQ-C, ε-greedy. 140
Table 18. Learned actions for all agents from turn 10-12 in 15 turn UrbanSim

game using DQ-C, ε-greedy. 141
Table 19. Learned actions for all agents from turn 13-15 in 15 turn UrbanSim

game using DQ-C, ε-greedy. 142
Table 20. Learned policy for Battalion Commander by turn for 15 turn Urban-

Sim game using DQ-C. 209
Table 21. Learned policy for CA unit by turn for 15 turn UrbanSim game using

DQ-C. 210
Table 22. Learned policy for E CO a by turn for 15 turn UrbanSim game using

DQ-C. 211
Table 23. Learned policy for F CO a by turn for 15 turn UrbanSim game using

DQ-C. 212
Table 24. Learned policy for E CO b by turn for 15 turn UrbanSim game using

DQ-C. 213
Table 25. Learned policy for F CO b by turn for 15 turn UrbanSim game using

DQ-C. 214
Table 26. Learned policy for G CO a by turn for 15 turn UrbanSim game using

DQ-C. 215
Table 27. Learned policy for H CO a by turn for 15 turn UrbanSim game using

DQ-C. 216
Table 28. Learned policy for G CO b by turn for 15 turn UrbanSim game using

DQ-C. 217
Table 29. Learned policy for QRF by turn for 15 turn UrbanSim game using

DQ-C. 218
Table 30. Learned policy for H CO b by turn for 15 turn UrbanSim game using

DQ-C. 219
Table 31. Learned policy for Battalion Commander by turn for 15 turn Urban-

Sim game using Q(λ). 220

xiv

Table 32. Learned policy for CA unit by turn for 15 turn UrbanSim game using
Q(λ). 221

Table 33. Learned policy for E CO b by turn for 15 turn UrbanSim game using
Q(λ). 222

Table 34. Learned policy for E CO a by turn for 15 turn UrbanSim game using
Q(λ). 223

Table 35. Learned policy for F CO a by turn for 15 turn UrbanSim game using
Q(λ). 224

Table 36. Learned policy for F CO b by turn for 15 turn UrbanSim game using
Q(λ). 225

Table 37. Learned policy for G CO b by turn for 15 turn UrbanSim game using
Q(λ). 226

Table 38. Learned policy for G CO a by turn for 15 turn UrbanSim game using
Q(λ). 227

Table 39. Learned policy for H CO a by turn for 15 turn UrbanSim game using
Q(λ). 228

Table 40. Learned policy for QRF by turn for 15 turn UrbanSim game using Q(λ).229
Table 41. Learned policy for H CO b by turn for 15 turn UrbanSim game using

Q(λ). 230
Table 42. Learned policy for Battalion Commander by turn for 15 turn Urban-

Sim game using SARSA(λ). 231
Table 43. Learned policy for CA unit by turn for 15 turn UrbanSim game using

SARSA(λ). 232
Table 44. Learned policy for E CO a by turn for 15 turn UrbanSim game using

SARSA(λ). 233
Table 45. Learned policy for E CO b by turn for 15 turn UrbanSim game using

SARSA(λ). 234
Table 46. Learned policy for F CO b by turn for 15 turn UrbanSim game using

SARSA(λ). 235
Table 47. Learned policy for F CO a by turn for 15 turn UrbanSim game using

SARSA(λ). 236
Table 48. Learned policy for G CO a by turn for 15 turn UrbanSim game using

SARSA(λ). 237
Table 49. Learned policy for G CO b by turn for 15 turn UrbanSim game using

SARSA(λ). 238
Table 50. Learned policy for H CO a by turn for 15 turn UrbanSim game using

SARSA(λ). 239

xv

Table 51. Learned policy for QRF by turn for 15 turn UrbanSim game using
SARSA(λ). 240

Table 52. Learned policy for H CO b by turn for 15 turn UrbanSim game using
SARSA(λ). 241

Table 53. Learned policy for Battalion Commander by turn for 15 turn Urban-
Sim game using DQ-C, Boltzmann. 242

Table 54. Learned policy for CA unit by turn for 15 turn UrbanSim game using
DQ-C, Boltzmann. 243

Table 55. Learned policy for E CO a by turn for 15 turn UrbanSim game using
DQ-C, Boltzmann. 244

Table 56. Learned policy for E CO b by turn for 15 turn UrbanSim game using
DQ-C, Boltzmann. 245

Table 57. Learned policy for F CO a by turn for 15 turn UrbanSim game using
DQ-C, Boltzmann. 246

Table 58. Learned policy for F CO b by turn for 15 turn UrbanSim game using
DQ-C, Boltzmann. 247

Table 59. Learned policy for G CO a by turn for 15 turn UrbanSim game using
DQ-C, Boltzmann. 248

Table 60. Learned policy for G CO b by turn for 15 turn UrbanSim game using
DQ-C, Boltzmann. 249

Table 61. Learned policy for H CO a by turn for 15 turn UrbanSim game using
DQ-C, Boltzmann. 250

Table 62. Learned policy for H CO b by turn for 15 turn UrbanSim game using
DQ-C, Boltzmann. 251

Table 63. Learned policy for QRF by turn for 15 turn UrbanSim game using
DQ-C, Boltzmann. 252

Table 64. Learned policy for Battalion Commander by turn for 15 turn Urban-
Sim game using Q(λ), Boltzmann. 253

Table 65. Learned policy for CA unit by turn for 15 turn UrbanSim game using
Q(λ), Boltzmann. 254

Table 66. Learned policy for E CO a by turn for 15 turn UrbanSim game using
Q(λ), Boltzmann. 255

Table 67. Learned policy for F CO a by turn for 15 turn UrbanSim game using
Q(λ), Boltzmann. 256

Table 68. Learned policy for E CO b by turn for 15 turn UrbanSim game using
Q(λ), Boltzmann. 257

Table 69. Learned policy for F CO b by turn for 15 turn UrbanSim game using
Q(λ), Boltzmann. 258

xvi

Table 70. Learned policy for G CO b by turn for 15 turn UrbanSim game using
Q(λ), Boltzmann. 259

Table 71. Learned policy for G CO a by turn for 15 turn UrbanSim game using
Q(λ), Boltzmann. 260

Table 72. Learned policy for H CO a by turn for 15 turn UrbanSim game using
Q(λ), Boltzmann. 261

Table 73. Learned policy for H CO b by turn for 15 turn UrbanSim game using
Q(λ), Boltzmann. 262

Table 74. Learned policy for QRF by turn for 15 turn UrbanSim game using
Q(λ), Boltzmann. 263

Table 75. Learned policy for all agents by turn for 15 turn UrbanSim game us-
ing Q(λ), ε-greedy. 265

Table 76. Learned policy for all agents by turn for 15 turn UrbanSim game us-
ing DQ-C, ε-greedy. 265

Table 77. Learned policy for all agents by turn for 15 turn UrbanSim game us-
ing DQ-C, Boltzmann. 266

Table 78. Learned policy for all agents by turn for 15 turn UrbanSim game us-
ing SARSA(λ), ε-greedy. 266

Table 79. Learned policy for all agents by turn for 15 turn UrbanSim game us-
ing SARSA(λ), Boltzmann. 267

Table 80. Learned policy for all agents by turn for 15 turn UrbanSim game us-
ing Q(λ), Boltzmann. 267

Table 81. Parameter settings that produced the best observed values for noisy 10-arm
bandit. 281

Table 82. Parameter settings that produced the best observed values for 5x5 Determin-
istic Gridworld. 281

Table 83. Parameter settings that produced the best observed values for 5x5 Stochastic
Gridworld. 281

abbreviations.tex

xvii

THIS PAGE INTENTIONALLY LEFT BLANK

xviii

LIST OF ACRONYMS

ACMAS Agent Centered Multi-Agent Systems

ACT-R Atomic Components of Thought

ANSF Afghan National Security Forces

AoA Analysis of Alternatives

ASC-U Assignment and Scheduling Tool for Unmanned Aerial Vehicles

BI Behavioral Intention

CG Cultural Geography

CLARION Connectionist Learning with Adaptive Rule Induction On-line

CLIPS C Language Integrated Production System

COMBATXXI Combined Arms Analysis Toolkit for the 21st Century

DDR Downside Deviation Ratio

DES Discrete Event Simulation

DQ-C Direct-Q Computation

DoD Department of Defense

DMSO Defense Modeling Simulation Office

GOMS Goals, Operators, Methods, and Selection

ICT Institute for Creative Technology

IED Improvised Explosive Device

xix

IWARS, Infantry Warrior Simulation

JSIMS Joint Simulation System

KC Kandahar City

MAS Multi-Agent Systems

MCCDC-OAD Marine Corps Combat Development Command, Operations Analysis Di-

vision

MC Monte Carlo

MDP Markov Decision Process

NMD Naturalistic Decision-Making

NOLH Nearly Orthogonal Latin Hypercube

NRC National Research Council

OCOMAS Organization Centered Multi-Agent Systems

OneSAF One Semi-Automated Forces

OODA Observe, Orient, Decide, and Act

PBC Perceived Behavioral Control

POMDP Partially Observable Markov Decision Process

PTSP Physical Traveling Salesman Problem

RL Reinforcement Learning

SOAR State, Operator, and Results

TD Temporal Differencing

xx

TRAC TRADOC Analysis Center

TRAC-WSMR TRADOC Analysis Center -White Sands Missile Range

TPB Theory of Planned Behavior

TSP Traveling Salesman Problem

TTP Tactics, Techniques, and Procedures

RPD Recognition Primed Decision Making

SARSA State-Action-Reward-State-Action

SD Standard Deviation

SN Subjective Norm

USA United States Army

UCB Upper Confidence Bound

UCT Upper Control Bound for Trees

USMC United States Marine Corps

xxi

THIS PAGE INTENTIONALLY LEFT BLANK

xxii

ACKNOWLEDGEMENTS

I have been blessed with a supportive family, committee, and advisor that have

encouraged and supported me throughout the marathon of the last three years. My wife,

Maurisa, patiently allowed me to continue “piddling on the computer” late into the evening

without complaint. Katie, Jacob, Josh and Gabe never complained about their father’s

constant busy schedule. Katie excelled at school and sports throughout the process, making

it hard for me to keep up with her on her 2-mile run by pushing her personal best down a

little further each year. Without her leadership and support as the big sister in the house,

my dissertation could not have been completed. Jacob continued to shine on the soccer

field and in lacrosse, to set the standard in academic performance at school, and to serve as

an excellent role model for his little brother. Joshua grew from a toddler to a young man

- literally gaining at least a foot and a half of vertical in the process. His big heart and

willingness to play at any time, and to forgive his dad for not having much time, inspired

me to keep my nose to the grindstone. Gabriel joined the family after my first year in the

program and watching him grow and learn has been a joy that I do not take for granted.

I thank God everyday for placing me in the company of such a wonderful and supportive

family and am humbled by the opportunity guide my children on the path to adulthood.

They are my best friends. Maurisa is the love of my life and has been supportive every step

of the way these last 18 years. I love her with all my heart.

Chris Darken has served as my mentor these last three years and as a role model for

how to conduct research. His demeanor has always been positive and he constantly kept

me moving forward. I cannot thank him enough for his patience and support. He is one of

the most intelligent individuals I have ever had the pleasure of working with, but also one

of the most personable. He is absolutely willing to meet each individual wherever they are

and has the ability to read his audience to understand if they are still with him or if he needs

to recast his material. This is a rare combination that serves him well as both a professor,

advisor, and friend.

xxiii

Michael McCauley was a constant source of sage counsel. His broad experience

in academia and the applied world give him a unique perspective on research. His knowl-

edge of experimental psychology is unmatched and his insistence on grounding research in

empirical data when possible kept me from going astray on more than one occasion.

Arnold Buss is one of the most eminently practical and pragmatic gentlemen that I

know. His insistence on fully defining models and objectives prior to touching code saved

me countless hours, and had the potential to save me more had I been as disciplined as he.

He is always willing to assist others regardless of the triviality of the question. His practical

approach to modeling and simulation serve as an example to us all.

Jeffrey Appleget and Michael Jaye both served as anchors of support in all my

efforts. Constantly positive in attitude and demeanor they expressed confidence throughout

the process that I would finish, despite my own moments of doubt. I am indebted to both

for their unwavering support and encouragement.

Finally, the strong team of analysts at TRAC-MTRY enabled me to wear my di-

rector hat part time and my student hat a majority of the time. Without this strong group

stepping up and performing I would not have been able to complete my research on time.

Jack Jackson has always been a source of support and encouragement and with him as the

deputy I knew I could put things on autopilot as required. Jason Caldwell, Paul Evangelista,

Tom Deavons, James Henry, Kevin Bolke, Ricky Brown, Ed Massotti, Steve Bitner, and

Joe Vargas all rowed together as a team to make sure the organization continued to produce

quality research. John Ruck and Harold Yamauichi consistently made themselves available

to answer questions related to the implementation of my research into various models and

went above and beyond to assist, as did Jimmy Liberato who configured and troubleshot

our small Condor cluster, that enabled much of my benchmark testing. Imre Balough as-

sisted in helping to demystify COMBATTXXI. Thanks to the students who allowed me

to serve as their second readers and kept me motivated with their enthusiasm and ideas:

Sotiris Papadoupolis, Dan McKaughn, Shawn Pollock, Ozcan Ozkan, and Brian Vogt.

xxiv

This has been a growing experience that I will never forget and I thank my Lord and

savior who was with me every step of the way. My faith assures me that I am walking the

path he has laid out for me and I give all the glory to God for allowing me the opportunity

to shine on his behalf.

Even the youths shall faint and be weary, and the young men shall utterly fall:

But they that wait upon the Lord shall renew their strength; they shall mount

up with wings as eagles; they shall run, and not be weary; and they shall walk,

and not faint. Isaiah, 40:30-31

xxv

THIS PAGE INTENTIONALLY LEFT BLANK

xxvi

I. INTRODUCTION

Modeling and simulation of military operations requires human behavior models

capable of learning from experience in complex environments where feedback on action

quality is noisy and delayed. This dissertation examines the potential of reinforcement

learning, a class of learning algorithms from artificial intelligence, to address this need.

Reinforcement learning provides an empirically developed conceptual model of human

behavior to guide the implementation of a model for human decision making within sim-

ulation models (Lattal, 2010; Thorndike, 1911). Cognitive architectures are simulation-

oriented models of individual human information processing and behavior often developed

to emphasize specific aspects of cognition, depending on the use case (Langley, Laird, &

Rogers, 2009; Zacharias, MacMillan, & Van Hemel, 2008). Autonomous agents are soft-

ware agents designed to sense their environment and select appropriate actions to express

in the environment-based on their perception of the state of the environment (Russell &

Norvig, 2010). A simulation model is a representation of those elements of a real-world

phenomena required to support either the issues for analysis or the training objectives of

the user, dependent on the specified use case (Goerger, McGinnis, & Darken, 2005).

A. MOTIVATING PROBLEM

The Department of Defense of the United States relies on simulation models to

inform decision-making processes for contingency planning and acquisition (Goerger et

al., 2005; DMSO, 2004; Zacharias et al., 2008). Simulation models support analyses that

provide insights into the combat effectiveness of weapon systems, the appropriate mix of

capabilities, and the impact of tactics, techniques, and procedures (TTP) that would not

otherwise be obtainable since, in many cases, physical experiments are infeasible or too

costly. Training simulations serve to provide practice environments in which trainees can

develop skill proficiency at relatively low cost and risk. The human decision maker is

1

represented in combat simulations with varying degrees of sophistication depending on the

model (Zacharias et al., 2008). In many cases, agent decision-making is limited to a small

set of reflexive rules, which limits the flexibility of these models and increases scenario

development time and cost required to support analysis.

Many recent DoD studies center around capabilities designed to improve the qual-

ity and quantity of information provided to a decision maker (Zacharias et al., 2008). The

analysis of the impact of information on combat operations requires an agent that, when

presented with new or different sets of information from the environment, can change its

behavior, choosing a different action-based on feedback from the environment. DoD train-

ing simulations require adaptive agents capable of providing trainees with realistic training

experiences by serving as autonomous agents within the training environment, as well as

software agents that can adaptively adjust the training environment in order to improve the

trainees experience. DoD combat simulations need agents capable of learning from their

experience in the environment and choosing different actions in response to different sit-

uations (Zacharias et al., 2008). The DoD analytic community also requires simulation

agents whose decision-making is based on an empirically validated conceptual model and

whose resultant behavior is explainable and traceable (J. Alt, Lieberman, & Blais, 2010;

DMSO, 2004; Goerger et al., 2005; Zacharias et al., 2008). RL algorithms coupled with a

model of human information processing, such as a practical cognitive architecture, provide

one potential approach to address this need (J. K. Alt, Baez, & Darken, 2011; Anderson &

Schunn, 2005; Zacharias et al., 2008; N. Taatgen, Lebiere, & Anderson, 2006).

The temporal credit assignment problem in RL refers to the challenge of assigning

credit or blame to actions that lead to the achievement of a goal in sequential task settings.

Complex tasks often require numerous steps to achieve a goal, and as an individual learns

the correct sequence of steps the challenge becomes understanding which decisions should

be reinforced to enable a shorter path in the next iteration. Various strategies exist for ad-

dressing this challenge, but it is still an open area of research within the RL community.

The RL algorithm presented in this dissertation results in improved learning performance

2

over similar algorithms through its relatively straightforward, but novel, approach to the

temporal credit assignment problem. This dissertation contributes insights in the applica-

tion of RL to four use cases within military modeling and simulation.

B. DEFINITIONS AND TERMINOLOGY

This section provides a brief description of important definitions and terminology

used in this dissertation. A software agent consists of a set of sensors, actuators, and an

internal decision model (Russell & Norvig, 2010). The agent receives information regard-

ing its environment in the form of percepts detected by its sensors. These percepts provide

atomic-level information used by the agent to form a notion of state, which the agent uses

to select an action to be expressed in the environment through its actuators, see Figure 1

(Russell & Norvig, 2010).

Figure 1: Agent environment interaction.

Assume that a software agent is placed in a sequential decision problem in a discrete

state space, s ∈ S, and must choose from a finite set of actions, a ∈ A, so as to maximize its

long-term reward, V(s), defined as the sum of rewards provided from its reward function

3

which maps states to point rewards, R(s) → r. If we assume the agent has access to a

transition matrix, Ps,s
′

a , describing the probability of transitioning from s given a to each

of the possible states, s ′, then the environment is a fully observable environment (Russell

& Norvig, 2010; Sutton & Barto, 1998). Further, this sequential decision problem is called

a Markov decision process (MDP) since it adheres to the Markov property, see Figure 2.

Figure 2: Simple two state MDP.

An MDP can be fully described by the tuple, 〈S,A, Ps,s ′a , R〉. A solution to an

MDP, referred to as a policy, π, maps states to actions, π(s) → a. If we assume that the

preferences of the agent are stationary over-time then the accrual of long-term reward can

be determined by a value-function, V(s) , which estimates the long-term value of a state

using either an additive or discounted sum, where γ ∈ [0, 1) is known as the discount factor

and t is the trial count (Powell, 2011; Russell & Norvig, 2010; Sutton & Barto, 1998),

4

h∑
t=1

rt,

∞∑
t=1

γtrt. (1)

As γ → 0, the agent places more weight on recent events and when γ → 1 the

discounted utility is equivalent to the additive case (Kaelbling, Littman, & Moore, 1996;

Powell, 2011; Russell & Norvig, 2010). Each sequence of states is considered a unique

policy, π. A policy is said to be stationary if it is deterministic and the action it chooses

depends only on the current state, s (Ross, 1982). Since this satisfies the Markov property

the sequence of states forms a Markov chain. Since the state transitions are Markovian it

is appropriate to think of the value of a state, V(s), in terms of expectations and the policy

as a mapping to the probability of taking action a in state s. We will consider only the

discounted case going forward and can state that the expected value of executing a policy,

π, starting in state s is,

Vπ(s) = Eπ[

∞∑
t=0

γtrt|st = s]. (2)

The optimal state-value function is the value that is the long-term reward the agent

will gain if it starts in that state and executes the optimal policy, π∗ (Kaelbling et al., 1996),

V∗(s) = max
π
E{

∞∑
t=1

γtrt}. (3)

The optimal value function is uniquely defined and can be obtained through the solution

of a set of simultaneous equations, referred to as the Bellman equations (Kaelbling et al.,

1996),

V∗(s) = max
a

{Ras + γ
∑
s ′

Ps,s
′

a V∗(s ′)}, ∀s ∈ S. (4)

5

We can now determine an optimal policy, π∗, that yields the greatest expected long-

term reward for a sequence of decisions (Kaelbling et al., 1996),

π∗(s) = max
a

{R(s) + γ
∑
s ′

Ps,s
′

a V∗(s ′)}. (5)

Assume that the agent has a fixed-time, t ∈ T , over which to maximize its long-

term reward, a finite horizon, then π∗ is said to be nonstationary, since it is a function of T

(Powell, 2011; Russell & Norvig, 2010). If this time constraint is relaxed and the agent has

an infinite amount of time over which to act, an infinite horizon, the optimal action depends

only on the current state, s, and the optimal policy, π∗, becomes stationary.

The value-iteration algorithm, a technique from the field of dynamic programming,

provides a means of solving the Bellman equations, stating that the utility of a state is equal

to the immediate reward from the current state, s and the expected discounted utility of the

next state, s ′, assuming that the agent chooses the optimal action available (Kaelbling et

al., 1996; Ross, 1982; Russell & Norvig, 2010; Sutton & Barto, 1998),

Vπ(s)← R(s) + γmax
a

∑
s ′

Ps,s
′

a Vn−1(s). (6)

This iterative form of the algorithm will typically proceed until it reaches an equilibrium-

based on the maximum error allowed in the approximation of the value of a state, V(s).

Value-iteration serves as a basis for many of the RL algorithms. It also serves as the mo-

tivation for policy iteration, a technique to iteratively improve the performance of a policy

by solving the analytic version of the Bellman equation and the action-values, Q(s, a),

associated with a given state, s (Dimitrakakis & Lagoudakis, 2008; Sutton & Barto, 1998),

Qπ(s, a) = R(s) + γ
∑
s ′

Ps,s
′

a Vπ(s ′). (7)

6

The action-value,Q(s, a), on which we will focus much our our research, can then

become the basis for determining the new policy, π,

πi+1(s) = max
a
Qπi(s, a). (8)

Knowledge of the transition probabilities, Ps,s
′

a , is seldom available in real-world appli-

cations or to a human decision maker attempting to solve a complex MDP. The ability to

learn the transition probabilities, Ps,s
′

a , over-time, as is the case in model-based RL, has its

own limitations due to the potentially large number of states and actions and the need to

maximize utility while learning. Model-free methods of RL provide a useful alternative to

determine the optimal policy, π∗, within sequential decision problems.

If we assume that the agent has a noisy sensor that affects its perception of in-

formation from the environment then the environment is no longer fully observable. The

MDP now becomes a partially observable Markov decision process (POMDP) (Russell &

Norvig, 2010). The elements of the MDP are still present, but now a sensor model is intro-

duced. This noisy sensor and its impact on agent perception distinguish between MDPs and

POMDPs. As a result, the agent looks for the optimal policy-based on its current perceived

state rather than its actual state. RL techniques provide a feasible means of determining the

optimal policy within a POMDP, but we will continue discussion of the RL problem in the

context of an MDP often used in benchmarking the performance of RL systems, see Figure

3 (Sutton & Barto, 1998).

7

Figure 3: Agent-environment interaction in reinforcement learning.

A RL problem is a form of goal-directed learning from interaction, or trial and er-

ror, where the learner, an agent, tries to learn what actions to take to maximize the sum of

a numeric reward signal, which might be immediate or delayed (Powell, 2011; Russell &

Norvig, 2010; Sutton & Barto, 1998). RL problem formulations include three characteris-

tics: sensation, action, and goal. An agent requires information regarding the state of the

environment, the relevant action to affect the state, and a reward function mapping states to

goals (Sutton & Barto, 1998).

A RL problem in which the next state, s ′, only depends on the current state, s, that

satisfies the Markov property, is an MDP, but RL is not limited to MDPs, though MDPs

often serve as benchmarking environments for RL algorithms. RL can be successfully

applied to non-Markov environments. RL tasks can be either episodic, with finite horizon,

if the task breaks into natural subsequences, referred to as episodes, or continuing tasks,

infinite horizon, if the task goes on continually without limit, with the long-term cumulative

reward being treated in either an additive or discounted manner as described previously.

Episodes end in unique terminal states, such as when a goal is achieved.

An important distinction between techniques used to solve MDPs and the RL prob-

lem is the degree of information available to the agent. The RL agent requires no apriori

8

model of the environment or the reward function, R(s). Instead it must learn through trial

and error as Russell and Norvig summarize nicely,

Imagine playing a new game whose rules you don’t know; after a hundred
or so moves, your opponent announces, “You lose.” This is RL in a nutshell.
(Russell & Norvig, 2010)

The core components of a RL system, as defined by Sutton and Barto, are a policy, π(s),

a reward function, R(s), and a value function, V(s) or the value of a an action taken in a

given state,Q(s, a) (Sutton & Barto, 1998). Some systems make use of an internal learned

model of the environment, but here we scope our research to model-free methods.

Model-free methods seek to estimate the value of a state, V(s), or the value of a

state-action pair,Q(s, a), and have proven successful in a range of application areas across

several disciplines (D. Bertsekas & Tsitsiklis, 1996; D. Bertsekas, 2011; Russell & Norvig,

2010; Powell, 2011).

Model-based approaches refer to the class of RL approaches that maintain an in-

ternal representation of the transition matrix describing its environment. These approaches

attempt to learn the value of a state, V(s), and the transition probabilities, Ps,s
′

a , which often

results in lengthened learning-times. The policy, π(s), maps states to actions, π(s) → a,

as discussed previously. Reward functions provide the agent with a numeric signal when

the goal has been obtained by mapping perceived states to a reward, R(s)→ r . The value

function, V(s), or action-value function, Q(s, a), tracks the long-term value of a state or

state-action pair, (s, a), using either additive or discounted methods.

RL algorithms are often categorized by the method that they employ to form the

estimate of the value of a state-action pair, (s, a), with the two main categories being

Monte Carlo (MC) and temporal differencing (TD) methods. While both methods require

samples of each state-action pair, (s, a), and the rewards, r, gained from experience with

the environment, TD methods refer to those methods that form an expectation rather than

learning directly (Szepesvari, 2010).

9

Two classic problems present themselves in RL, the exploration-exploitation dilemma

and the temporal credit assignment problem. The exploration-exploitation dilemma refers

to the problem of determining when to choose an action perceived as non-optimal. If an

agent always chooses a greedy option, it has a stationary greedy policy, then it risks miss-

ing out on a potentially higher reward from an untried (s, a). It must balance this against

the need to maximize long run expected utility. This problem occurs not only in RL, but

in sequential decision making problems in general (Robbins, 1952; Ross, 1982). We will

discuss several non-stationary, stochastic, policy strategies to address this problem.

The temporal credit assignment problem refers to the challenge of efficiently as-

signing rewards to state-action pairs when rewards are delayed (Szepesvari, 2010). This

challenges appears in tasks requiring the completion of multiple steps prior to reach the

goal such as in a path finding task. How does one identify which actions attempted during

the episode contributed to the achievement of the goal?

10

Figure 4: Information processing model of human cognition.

Cognitive architectures are simulation-oriented models of individual human infor-

mation processing and behavior that emphasize specific aspects of cognition, depending on

the use case (Langley et al., 2009; Zacharias et al., 2008). The National Research Council

identifies cognitive architectures for their relevancy to three core areas of military model-

ing: analysis and forecasting in planning, simulation for training, and design and evaluation

for acquisition (Zacharias et al., 2008). Cognitive architectures typically incorporate some

derivative of the human information processing model, see Figure 4, which is minimally

described as containing functions for perception, sense-making, meta-cognition, long-term

memory, and action-selection (J. K. Alt et al., 2011; Klein, 1993; Wickens & Hollands,

2000). The incorporation of RL within existing cognitive architectures, such as ACT-R

11

and SOAR, has been positively received and expanded the flexibility of these architectures,

showing promise in developing adaptive agents that provide credible representations of hu-

man behavior within complex DoD simulation models (Laird, 2008; Laird & Wray III,

2010). Within the DoD modeling, simulation, and analysis communities, models of de-

cision making such as a recognition prime decision making (RPD) and Boyd’s observe,

orient, decide, and act (OODA) loop have gained credibility as representing the essential

functions of military decision making (Zacharias et al., 2008; Klein, 1993).

One challenge in the use of existing cognitive architectures in military modeling

and simulation is the data required to populate these models, whose intended use lies in

understanding and representing detailed cognitive processing of human cognition at a fine-

grained-level on specific tasks. The assumptions that must be accepted and the challenges

of collecting data to populate these models make them challenging to incorporate into DoD

analytic models due to the strict model and data validation requirements of these models

(Cassenti, 2009). A practical cognitive architecture that streamlines data required while

still meeting the functional requirements to support traceable autonomous agents within

military modeling and simulation is required (J. K. Alt et al., 2011).

C. CHALLENGES OF ADAPTIVE AGENT DECISION MAKING IN ANALYTIC
AND TRAINING SIMULATIONS

This section illuminates the challenges of using adaptive agents in simulation mod-

els intended for analytic and training purposes. Simulation model development and sub-

sequent analysis of the simulation output cannot be treated as independent activities. The

simulation model must support providing insights into the issues for analysis identified by

the analyst. The analyst must develop the simulation model and situational vignettes that

represent the measurement space required to inform the analysis question. Many combat

models used by the analytic community, such as COMBATXXI, IWARS, and OneSAF,

provide the user the ability to construct combat scenarios and assign behaviors to agents

within the simulation (DA, 1999; DMSO, 2004; Goerger et al., 2005). These models rep-

12

resent the physics of combat well, but a common shortfall exists in the representation of

human decision-makers. Each model provides a rule-based mechanism for controlling be-

havior, but suffers from a brittleness problem when the agent encounters situations that

were not anticipated apriori. Agents designed for use in training simulations encounter

the same challenges, but brittleness problems become more readily apparent due to the in-

teraction with the trainee and can serve to distract the trainee from the intended training

objectives. Other DoD models, such as the Cultural Geography (CG) model, are designed

to represent aspects of the civilian population rather than combat forces. These agents rep-

resent not a single human, but a population segment. Similar limitations in the behavior of

agents exist in this class of simulation model (J. Alt, Jackson, Hudak, & Lieberman, 2009).

Adaptable agents, such as those based on RL, provide a reasonable option to avoid

the brittleness problem and to potentially reduce the overhead associated with scenario

development and are based on an empirically derived conceptual model that is readily ex-

plainable (Zacharias et al., 2008). Many issues arise in the use of adaptive agents within

DoD simulation models intended for analysis such as: (i) is the agent decision model-

based on a valid conceptual model of human decision-making?, (ii) what are the data re-

quirements to populate the model and is it feasible to obtain from a valid source?, and

(iii) are the results reproducible? These issues often serve as an impediment to the use of

adaptive agents within analytic models, though there is general consensus that such agents

would improve the efficiency of scenario development processes and the value of simula-

tion analysis, particularly those analysis products intended to gage the value of capabilities

designed to enable greater access to information. This dissertation stresses the need to uti-

lize explainable and practical approaches to the use of adaptive agents with these issues in

mind.

D. DISSERTATION CONTRIBUTIONS AND ORGANIZATION

The primary contribution of this research is the novel use of the exponentially

weighted average reward as an action-value estimator in reinforcement learning systems

13

in order to address the temporal credit assignment problem in reinforcement learning. This

relatively straightforward approach improves learning speed over dominant existing ap-

proaches in task environments with noisy and delayed reward signals and improves perfor-

mance in non-stationary environments, while reducing the number of parameters required

to be specified by the system designer from 3, for current dominant approaches, to 2. Many

real-world applications fall into this category of problem and in these cases delays in learn-

ing or recovery can result in control system failures and lost resources. The results provide

the modeling and simulation community with a method that speeds learning in these chal-

lenging cases, reducing the time required to train autonomous software agents and the time

required for agents to adjust to changes in their environment. These performance results

carry over into each of the multiple modeling and simulation application areas examined in

this research.

A second major contribution of this research is a novel methodology and example

application of the use of reinforcement learning as a means of verifying the reward struc-

ture of a training simulation. The reward structure in a training simulation directly impacts

trainee learning-time and outcomes. A weak reward signal will result in slower learning

and a reward signal that rewards trainee actions that are not consistent with learning objec-

tives will result in the trainee learning the wrong objectives. This research demonstrates

the use of reinforcement learning to examine the reward structure and produce an example

of the learned behavior, or policy, that can provide the training simulation designer feed-

back on the student behaviors rewarded by the training simulation prior to the simulation

ever touching student hands, allowing the developer the opportunity to identify and correct

deficiencies prior to fielding.

A third major contribution of this research is a methodology and application of

reinforcement learning to address limitations of a discrete event simulation. This simulation

is used to produce a feasible schedule for unmanned aerial assets that maximizes a value

function by correctly pairing platforms with mission demands in the context of a combat

scenario. The current approach employs a linear program that maximizes value over a

14

finite-time horizon, but fails to provide a feasible schedule that maximizes value in cases

where high value targets appear beyond the time horizon or where high value emergent

targets become available following the initial allocation. Further, this approach fails to learn

to recognize the cues leading to these situations, as a human decision maker would over-

time, and makes these mistakes consistently resulting in feasible, but non-value maximizing

schedules. The value of the feasible schedule produced in different combat simulations

for a given mix of unmanned platforms is used to inform acquisition decisions regarding

unmanned assets, so the current tools limitations directly impact the representation of the

value of a given mix to senior decision makers. Since the difference in the value lost to

these cases varies across mixes, the analyst cannot know how this systematic issue effects

results in the aggregate. This research demonstrates the use of reinforcement learning to

address these cases and an approach that relaxes the strict requirement for fully observable

demands currently imposed on the simulation.

A fourth major contribution of this research a methodology and application of rein-

forcement learning to represent human decision-making within a combat simulation. This

straight-forward approach provides an empirically developed conceptual model of human

decision making, important for eventual model validation, that facilitates dynamic decision

making and allows agents to learn from interaction with their environment. This approach

incorporates the novel use of reinforcement learning within hierarchical task networks, pro-

viding the potential to enable adaptive decision making within complex behaviors. This has

particular relevance for enabling agents that adapt to the behavior of an opposing force, as

human decision makers do, as opposed to relatively brittle scripted methods currently in

use.

A fifth contribution of this research is the development and application of a novel

practical cognitive architecture that facilitates the representation of human information pro-

cessing and the inclusion of domain knowledge in a structured manner that enables the se-

lective use of goal-driven reinforcement learning to represent human decision making. The

cognitive architecture provides an understandable framework to incorporate the effects of

15

perception, working memory, and dynamic goal-setting within simulation agents. This is

particularly relevant for analysis topics related to the value of information or the impact

of networked sensors. The cognitive architecture also has relevance to the representation

of civilian behavior in conflict areas, where the analysis focuses on the beliefs and inter-

ests of a population and the cognitive architecture provides a organizing construct. This

contribution was incorporated into a social simulation used to facilitate war-games that

received a 2011 Army Modeling and Simulation Office award for excellence in analysis

(http://www.ms.army.mil/about/awards/fy11-awards.html).

The flow of the dissertation is as follows: Chapter II provides a review of rein-

forcement learning and cognitive architectures. Chapter III specifies and documents the

performance of a the novel use of an exponentially weighted average that takes advantage

of continuous-time as an action-value estimator in a reinforcement learning system in order

to addresses the temporal credit assignment problem in an intuitive manner. Chapter IV de-

tails the application of RL to each of the applied military simulation use cases. Chapter V

details the development and use of the cognitive architecture within a military social simu-

lation. Chapter VI provides a summary of contributions and describes the path forward for

future research.

16

II. REINFORCEMENT LEARNING AND COGNITIVE
ARCHITECTURES FOR AUTONOMOUS AGENT

DECISION-MAKING

When an organism acts upon the environment in which it lives, it changes that
environment in ways which often affect the organism itself. Some of these
changes are what the layman calls rewards, or what are now generally referred
to technically as reinforcers: when they follow behavior in this way, they in-
crease the likelihood that the organism will behave in the same way again.
(Ferster & Skinner, 1957)

This chapter contains the foundations for the subsequent development of a new action-value

estimator, describes measures by which the performance of RL algorithms are typically

judged, and provides foundational material for the subsequent development of a practical

situation-based cognitive architecture.

The simulations that DoD analysts use to inform decisions are typically large and

complex, with a large potential state space (Cioppa, Lucas, & Sanchez, 2004). The agents

within these models typically make decisions based on simple decision rules or custom

scripting for each scenario making code or behavior reuse difficult. These hard decision

rules lock agents into set TTPs for a given decision situation. This makes the exploration

of new capabilities, which potentially change TTPs, difficult and time-consuming. These

relatively brittle decision mechanisms also preclude the representation of differing levels

of experience and training present in real human decision makers (Zacharias et al., 2008).

Adaptive agents are required to provide simulation models capable of representing the nu-

ances of human decision makers in a more credible manner. Adaptive agents are needed

that possess the following characteristics:

• Empirically derived conceptual model of decision-making.

• Capable of adapting behavior gracefully when environment changes.

• Learn appropriate behavior in minimum time and with minimum error.

17

• Require few tunable parameters and initialization data.

• Behavioral changes occur in a transparent and explainable manner.

A variety of approaches for employing adaptive software agents exist in the liter-

ature, but few have been explored within DoD simulation models (Zacharias et al., 2008;

Shoham & Leyton-Brown, 2009). Several model-free RL methods have been proposed

and documented in the RL literature including Q-learning and SARSA, but challenges in

learning with noisy or delayed rewards still exist (Powell, 2011; Sutton & Barto, 1998;

Szepesvari, 2010). Cognitive architectures of varying degrees of complexity have been ap-

plied to this problem as well, such as ACT-R, SOAR, CLARION and PMFServ, though

not to the the specific challenges of representing human decision makers in DoD analytic

simulation models (Langley et al., 2009; Sun, 2007b, 2006, 2007a; N. Taatgen et al., 2006;

Laird, 2008; Wray & Jones, 2006). The most promising of the current approaches, in

terms of satisfying the characteristics described above, are model-free RL methods and in-

formation processing based models of cognition that leverage domain knowledge, such as

cognitive architectures.

A. REINFORCEMENT LEARNING

Reinforcement learning is learning what to do how to map situations to action
so as to maximize a numerical reward signal. (Sutton & Barto, 1998)

This section provides a review of RL literature from the field of artificial intelligence

to include a brief summary of literature justifying its use as a conceptual model for human

behavior representation. The relevance of RL as a foundation of human behavior and the

broad utility of the algorithmic approaches developed in the artificial intelligence commu-

nity in solving a applied problems from a variety of fields, including dynamic programming

and operations research, are emphasized (D. Bertsekas & Tsitsiklis, 1996; Powell, 2011).

RL within the artificial intelligence community was originally inspired by research

in animal psychology and Thorndike’s “Law of Effect,” describing the effect of rewards

18

on an animal’s likelihood of selecting actions, still widely regarded as a basic founda-

tional principle accounting for much of animal, including human, behavior (Lattal, 2010;

Thorndike, 1911).

Of several responses made to the same situation, those which are accompanied
or closely followed by satisfaction to the animal will, other things being equal,
be more firmly connected with the situation, so that, when it recurs, they will
be more likely to recur; those which are accompanied or closely followed by
discomfort to the animal will, other things being equal, have their connections
with that situation weakened, so that, when it recurs, they will be less likely to
occur. The greater the satisfaction or discomfort, the greater the strengthening
or weakening of the bond. (Thorndike, 1911)

Thorndike’s research on the Law of Effect influenced Skinner’s research in operant

conditioning (Skinner, 1938). This research is widely documented and empirically derived,

making it a feasible candidate for a conceptual model for human behavior representation in

DoD simulation models. Acquisition of responses to stimulus by humans is still an active

area of research in the experimental psychological and neuroscience communities (Lattal,

2010; Nargeot & Simmers, 2011; Okouchi, 2009). The behavioral economics community,

particularly those who study decision-making under uncertainty, has also continued em-

pirical work in this area (Sundaram, 2005; Yi, Steyvers, & Lee, 2009). Duffy provides

a summary of recent empirical work in the area of agent-based computational economics

(Duffy, 2006). Several recent experiments have compared the results of human decision-

making experiments with the results produced by popular RL methods providing support

to the notion that RL can provide insight into human behavior in certain decision situa-

tions (Acuña & Schrater, 2010; Ishida, Sasaki, Sakaguchi, & Shimai, 2009; Nedic, Tomlin,

Holmes, Prentice, & Cohen, 2008; Steyvers, Lee, & Wagenmakers, 2009; Walsh & Ander-

son, 2010; Lee, Seo, & Jung, 2012).

19

Reinforcement learning contributes to the theory of planned behavior which has

been empirically studied as an explanation for behavior adoption (Ajzen, 1991). The theory

of planned behavior places reinforcement learning in a social context, by incorporating

societal norms, perceived behavioral control and attitude into the reward signal associated

with a potential behavior.

Reinforcement learning also overlaps with naturalistic decision-making (NDM),

particularly Klein’s recognition-primed-decision-making (RPD) model (Klein, 1993, 2008).

This model, based on empirical observations of decision-makers in primarily military and

emergency services organizations, describes pattern-matching that goes on with expert

decision-makers. Experts tend to recognize situations more readily than others, allow-

ing them to identify the appropriate action to take based on their experiences that led to

successful outcomes when previously in similar situations.

Most recently, studies utilizing brain imaging technologies have identified patterns

of reinforcement at the neuronal-level within the brain (Lee et al., 2012). Taken as a whole,

this body of work provides an empirically developed conceptual model of individual human

behavior, a requirement for DoD simulation models, upon which to base our implementa-

tion (DMSO, 2004).

Sutton and Barto provide a full chronological account of the impact of RL on the

field of artificial intelligence (Sutton & Barto, 1998). Since the sequential decision problem

arises in multiple applied settings, multiple fields developed techniques to address these is-

sues with several disciplines arriving at similar solutions. Operations research developed

the Bellman equations, which led to the development of the field currently referred to as

dynamic programming, to address the optimal control problem (Powell, 2011). During the

1980s, the RL community and dynamic programming community connected with Watkin’s

Q-learning algorithm (Powell, 2011; Sutton & Barto, 1998; Watkins & Dayan, 1992). A

third line of effort began under those who study control theory, motivated by physical

operating processes in continuous-time, with continuous states and actions. This led to

approximate dynamic programming, initially called heuristic dynamic programming. The

20

connections between this branch of research and RL were highlighted and enumerated by

Bertsekas, who reclassified RL as neuro-dynamic programming (D. Bertsekas & Tsitsiklis,

1996; D. P. Bertsekas, 1995; Powell, 2011). Powell attempts to unite neuro-dynamic pro-

gramming, RL, and dynamic programming as approximate dynamic programming (Powell,

2011). This research is primarily focused on the RL problem as defined by Kaelbling et

al. and Sutton and Barto and the algorithms and techniques developed and applied in the

artificial intelligence community (Kaelbling et al., 1996; Sutton & Barto, 1998).

The exploration-exploitation dilemma refers to the need to balance the ratio of ex-

ploratory actions and greedy action in order to maximize long-term reward. Since the RL

agent must explore its environment to understand its reward structure, but is also tasked

with maximizing its long-term reward, balancing the ratio between greedy and exploratory

actions is of critical importance.

The temporal credit assignment problem refers to the need to efficiently assign re-

wards to state-action pairs when rewards are delayed, as in path finding tasks. Delayed

rewards make it difficult to determine which of the state-action pairs attempted during the

episode contributed to the achievement of the goal (Sutton & Barto, 1998).

Dominant approaches to this problem rely on hill-climbing approaches known as

temporal-differencing (TD) methods that can be slow to learn, especially in environments

with noisy reward signals. In order to address this problem, a family of value functions that

incorporate a bias parameter in conjunction with standard TD methods tend to dominate the

literature. These techniques require the setting of three tunable parameters, making their

implementation challenging, and still often result in slow learning-times. These techniques

do not explicitly take into account environment time, the time scale that controls the dy-

namics of the environment in which the RL agent is operating, making them less sensitive

to changes in the environment that can affect performance.

21

In the remainder of this section, we provide additional background on temporal-

differencing methods (TD), Monte-Carlo methods (MC), and temporal-differencing with a

bias parameter (TD(λ)) methods, and detailed coverage of four relevant model-free meth-

ods.

1. Temporal Differencing, Monte-Carlo, and TD(λ) Methods

Approaches to model-free learning are broadly characterized as Monte Carlo, MC,

or temporal-differencing, TD, methods, with TD(λ) bridging the two approaches by incor-

porating the notion of eligibility traces to address the credit assignment problem (Sutton

& Barto, 1998; Russell & Norvig, 2010; Powell, 2011). Model-free methods estimate the

value of a state, V(s), or the value of a state-action pair, Q(s, a),–the focus of our dis-

cussion from here forward–without the need for an internal model of the environment’s

dynamics and its associated learning cost.

MC methods typically have to wait until the end of an episode and then update the

value of all state-action pairs, (s, a), visited, while TD methods make updates as observa-

tions occur using a noisy hill-climbing approach. It is still an open question as to which

techniques, MC or TD converge faster, though both have been shown to converge to true

estimates of the target value and the optimal policy under asymptotic conditions seldom

present in real-world applications (Sutton & Barto, 1998). MC methods sample returns

from completed episodic tasks to estimate the value of a state, V(s), as described by Sut-

ton (Sutton & Barto, 1998). First-visit MC and every-visit MC are two well-documented

techniques, which recursively update the sample mean for each state using either first-visit

or every-visit updating following the end of an episode, with αt = 1
t
, where i is the count

of the visits to a state,

V(s) = V(s ′) + αi(r− V(s
′)). (9)

First-visit MC updates this general equation using information from only the first

visit to each state during an episode, while every-visit MC uses information available from

22

each visit during an episode with discounting incorporated most recently by Szepesvari,

see Algorithm 11 and Algorithm 12 in Appendix A (Szepesvari, 2010).

MC methods’ ability to learn directly by sampling from the environment make them

attractive, but can result in longer learning-times than TD algorithms, however, conceptual-

ization of sequential decisions problems as a series of bandit problems has led to their use in

planning algorithms, such as Upper Control bound for Trees (UCT) (Kocsis & Szepesvári,

2006; Sutton & Barto, 1998). The relative simplicity of these techniques makes them at-

tractive for a variety of applications, though they still make use of a hill-climbing process in

the update (Bouzy & Chaslot, 2006; Valgaeren, Croonenborghs, & Colleman, 2009; Szita,

Chaslot, & Spronck, 2010; Asmuth & Littman, 2011). TD RL methods combine MC meth-

ods and those from dynamic programming to estimate the value of a state (Sutton & Barto,

1998; Kaelbling et al., 1996). Methods that make use of eligibility traces, such as TD(λ),

further combine TD and MC methods resulting in a class of methods with improved learn-

ing rate and less bias than pure TD methods according to the literature (Sutton & Barto,

1998; Szepesvari, 2010; Powell, 2011). Note that the methods discussed so far all typically

are applied to learn the value of a state rather than a state-action pair. An eligibility trace,

as defined by Sutton, tracks the eligibility of a state, or state-action pair, to receive credit

for future rewards. These techniques require the use of a third parameter, λ in addition to

the discount rate, γ, and the learning rate, α.

TD methods update the value of each state-action pair, Q(s, a), using the most

recent reward, r, and the estimated value of the next state-action pair,Q(s ′, a ′), rather than

waiting until the end of the episode (Sutton & Barto, 1998). TD(λ) combines elements of

MC and TD methods into a single framework to estimate the value of each state, V(s),

through the use of eligibility traces, see Algorithm 13 in Appendix A (Sutton & Barto,

1998; Szepesvari, 2010).

In order to apply TD techniques to determine the value of a state-action pair we rely

on algorithms such as Q-learning and SARSA, two dominant model-free algorithms from

this class. In order to apply TD(λ) techniques to estimate the value of a state-action pair,

23

we rely on the extensions of these algorithms which incorporate the notion of eligibility

traces, Q(λ) and SARSA(λ). We provide a brief review of these four TD methods in the

next section.

a. Q-learning and Q(λ)

Q-learning is an off-policy TD approach requiring no internal model of the

environment often used in RL applications. Let,

δ = r ′ + γmaxaQ(s ′, a) −Q(s, a),

Q(s, a)← Q(s, a) + αδ, (10)

where γ is a discount factor and α is referred to as a learning rate or step size parameter,

see Algorithm 1.

Q-learning approximates the optimal action-value function, Q∗, regardless

of the policy, π, as long as each state-action pair can be visited an infinite number of

times (Watkins & Dayan, 1992). This relies on the Robbins-Monro conditions, regarding

the size and sequence of the learning rate parameter, α, stated here:
∑∞
k=1 αk = ∞ and∑∞

k=1 α
2
k < ∞. Convergence to the optimal policy, π∗, is guaranteed for the sample

average case, where the learning rate αk = 1
k

, but not for constant learning rate, α. Q-

learning is known to systematically overestimate the value of the optimal action in a given

state,Q∗, but remains an important algorithm due to its simplicity and effectiveness, which

in applications where precise estimate are not as important as simply identifying the optimal

policy, π∗, is not impacted by this overestimation (Thrun & Schwartz, 1993).

The convergence rate of Q-learning is very dependent on the sequence of α.

A typical modification to ensure convergence is to gradually decay the learning rate as a

function of time or samples. Note that Sutton makes a claim that the lack of convergence

is a benefit in non-stationary environments and that a fixed, but properly tuned, constant

value of α is required for practical applied work (D. P. Bertsekas, 1995; Sutton & Barto,

1998).

24

Kaelbling notes that although the algorithm seems to be the most effective

for delayed reward domains it does not address issues regarding large state spaces and con-

vergence time can be long (Kaelbling et al., 1996; Szepesvari, 2010). Though one of the

first model-free algorithms proposed, Q-learning’s importance as a benchmark algorithm,

and its utility in application, are demonstrated through its continued application and its

many extensions (Powell, 2011; Sutton & Barto, 1998; Szepesvari, 2010). As late as 2011,

Yu and Bertsekas proposed a new version of Q-learning intended for use in the stochas-

tic shortest path problem with reduced computational cost due to the incorporation of a

solution of the optimal stopping problem (Yu & Bertsekas, 2011).

Algorithm 1 Q-learning
1: Parameters: s, the current state; Q(s,a), current value estimate of a state-action pair; γ,

discount rate; α, learning rate.

2: Initialize Q(s, a) arbitrarily.

3: Initialize s.

4: Return a using π(s)(ie.ε− greedy, β).

5: for For t in T: do

6: Take action a, observe r ′, s ′.

7: Return a ′ using π(s ′)(ie.ε− greedy, β).

8: δ = r ′ + γmaxaQ(s ′, a) −Q(s, a)

9: Q(s, a)← Q(s, a) + αδ

10: end for

11: Increment t. If t 6 T , go to line 3.

Q(λ) combines Q-learning with eligibility traces, with alternative versions

from Peng and Watkins. Focusing on Watkin’s version, the general idea is to reset the el-

igibility trace, e(s, a), for each exploratory action, which can result in poor performance

when the ratio of exploratory actions is large (Sutton & Barto, 1998). The eligibility trace,

e(s,a), for the greedy case is incremented by one for the chose action as described previ-

ously, but the value is only decayed by λ if the action chosen is the optimal greedy action.

25

Algorithm 2 Q(λ)
1: Parameters: s, the current state; Q(s,a), current value estimate of a state-action pair;

e(s,a), current eligibility to receive credit of current state-action pair; γ, discount rate;
α, learning rate; λ, decay rate.

2: Initialize Q(s, a) arbitrarily.
3: Initialize s.
4: Return a using π(s)(ie.ε− greedy, β).
5: for For t in T: do
6: Take action a, observe r ′, s ′.
7: Return a ′ using π(s ′)(ie.ε− greedy, β).
8: δ = r ′ + γmaxaQ(s ′, a) −Q(s, a)
9: e(s, a)← e(s, a) + 1

10: for all (s,a): do
11: Q(s, a)← Q(s, a) + αδe(s, a)
12: if a = a∗: then

e(s, a)← γλe(s, a)
13: else

e(s, a)← 0

14: end if
15: end for
16: end for
17: Increment t. If t 6 T , go to line 3.

Otherwise the eligibility trace is set to zero, e(s,a)← 0, prior to the next decision cycle, see

Algorithm 2.

b. SARSA and SARSA(λ)

SARSA (State-Action-Reward-State-Action) is an on-policy TD method

distinguished from Q-learning by the timing of the backup. Q-learning backs up the

best estimate of the value of a state-action pair, Q(s, a), during each observation period,

while SARSA backs up the value of each state action pair, Q(s, a), following the exe-

cution of each action (Powell, 2011). SARSA is generally considered less flexible than

Q-learning (Russell & Norvig, 2010). SARSA shares the same limitations in regard to

the choice of learning rate parameter, α, as described above for Q-learning. Here let

26

Algorithm 3 SARSA
1: Parameters: s, the current state; Q(s,a), current value estimate of a state-action pair; γ,

discount rate; α, learning rate.
2: Initialize Q(s, a) arbitrarily.
3: Initialize s.
4: Return a using π(s) (ie. ε-greedy, β).
5: for t in T: do
6: Take action at, observe rt+1, st+1.
7: Return at+1 using π(st+1)(ie.ε− greedy, β).
8: δ = rt+1 + γQ(st+1, at+1) −Q(st, at)
9: Q(st, at)← Q(st, at) + αδ

10: end for
11: Increment t. If t 6 T , go to line 3.

δ = r ′ + γmaxaQ(s ′, a ′) −Q(s, a),

Q(s, a)← Q(s, a) + αδ, (11)

and we see that the difference between Q-learning and SARSA is in the δ term only.

SARSA assumes the agent is in state s, chooses action a according to the policy being

followed, π(s), observes a reward, r, and the next state, s ′, prior to choosing a second

action a based on the same policy, see Algorithm 3. Bertsekas equates SARSA with a

variant of optimistic policy iteration with no particular convergence guarantees and Powell

describes SARSA as oscillating about the true estimate in most cases with no guarantees

on error bounds (D. Bertsekas & Tsitsiklis, 1996; Powell, 2011).

SARSA uses the same policy to decide which action to evaluate and to

choose the next action one step in the future. Powell refers to the policy that determines the

action to take as a behavior policy in physical systems and a sampling policy in a simula-

tion setting. The policy that determines the action that is best is the target policy in RL, he

refers to it as the learning policy. SARSA combines learning and policy sampling resulting

in on-policy learning, while Q-learning employs different learning and sampling policies

(Powell, 2011).

27

SARSA(λ) uses eligibility traces, e(s, a), as we saw in Q(λ), but it does not

reset traces on exploratory actions. This leads to reports of better empirical performance

than Q(λ), see Algorithm 4. All the estimators we have discussed must be paired with a

policy that balances the exploration and exploitation trade-off. There are no convergence

guarantees associated with SARSA(λ) or Q(λ) (Sutton & Barto, 1998).

Algorithm 4 SARSA(λ)
1: Parameters: s, the current state; Q(s,a), current value estimate of a state-action pair;

e(s,a), current eligibility to receive credit of current state-action pair; γ, discount rate;

α, learning rate; λ, decay rate.

2: Initialize Q(s, a) arbitrarily, e(s, a) = 0, ∀(s, a).

3: Initialize s.

4: Return a using π(s)(ie.ε− greedy, β).

5: for t in T: do

6: Take action a, observe r ′, s ′.

7: Return a ′ using π(s ′)(ie.ε− greedy, β).

8: δ = r ′ + γQ(s ′, a ′) −Q(s, a)

9: e(s, a)← e(s, a) + 1

10: for all (s,a): do

11: Q(s, a)← Q(s, a) + αδe(s, a)

12: e(s, a)← γλe(s, a)

13: end for

14: end for

15: Increment t. If t 6 T , go to line 3.

The four RL algorithms reviewed here, Q-learning, Q(λ), SARSA, and

SARSA(λ), provide a representative sample of the dominant methods employed in the

model-free estimation of the value of a state-action pair in practice. They all make use of

a noisy hill-climbing approach, which can result in slowed learning in noisy or delayed

reward environments. The use of a bias parameter, λ, to control bias through the use of

28

eligibility traces, adds another parameter that must be calibrated in addition to the discount

rate and the learning rate. These methods also do not make use of continuous-time informa-

tion from the environment within which the RL agent is operating, instead simply relying

on an action counter. This raises the question of whether a more straightforward approach

that takes advantage of the historical average reward and makes better use of environment

time could result in faster learning, particularly in environments with noisy and delayed

rewards.

2. Exporation and Exploitation

The exploration-exploitation trade-off presents itself in many applied sequential

decision making applications (sequential sampling, control theory, dynamic programming)

(Robbins, 1952; D. Bertsekas & Tsitsiklis, 1996; Sutton & Barto, 1998; Powell, 2011).

The exploration-exploitation dilemma in RL refers to the challenge of knowing when to

choose an action that does not adhere to the optimal, or greedy, policy. If an agent placed

in an unknown MDP adheres to a stationary policy that maximizes its long-term reward

it runs the risk of trying one action, receiving a single reward and then cycling on that

action since it will be the only action associated with a reward (Powell, 2011; Sutton &

Barto, 1998). An agent following such a strategy could miss out on potentially greater

reward to be achieved by attempting previously unexplored actions. This need to explore

the state-space is a requirement for RL systems to function effectively. Robbins described

this problem as a sequential sampling problem and is familiar to those interested in control

theory as well as dynamic programming (Robbins, 1952).

The policy selected to address this issue impacts the quality of the estimate provided

by the value function since it controls sampling. Stochastic policies, such as ε-greedy and

Boltzmann-exploration, referred to in this research later for brevity as β, guarantee the

exploration of the full state-action space as n → ∞, with variations that allow the ratio to

respond dynamically to the environment (Sykulski, Adams, & Jennings, 2010; Tran-Thanh,

Chapman, Munoz De Cote Flores Luna, Rogers, & Jennings, 2010; Tokic, 2010; Nouris,

2010).

29

Interval based techniques such as Upper Confidence Bound (UCB) base the level

of exploration on the uncertainty of the estimate (Auer & Ortner, 2010; Powell, 2011).

ε-greedy specifies the probability, ε, of taking an exploratory action explicitly, making it

intuitive to most practitioners. Boltzmann exploration uses the estimated value of each

state-action pair, Q(s, a), and a scaling parameter,τ, to develop a distribution over the

actions available from a given state, a ∈ π(s). In contrast, the general idea of interval

estimation is that those estimates with larger intervals will be sampled more often ensuring

that as n → ∞, σ → 0 for a stationary environment (Powell, 2011; Auer & Ortner, 2010;

Szepesvari, 2010). Techniques for decaying the ratio of exploration and exploitation, ε and

τ, are discussed in the literature to ensure greedy behavior as n → ∞, but for practical

RL problems in non-stationary environments Sutton and Barto recommend the use of an

appropriately “tuned” fixed ratio to avoid the inability to adapt to a changing environment

(Powell, 2011; Sutton & Barto, 1998).

a. ε-Greedy

It is common to see a mixed strategy employed in the literature. One of the

simplest of these techniques is ε-greedy, where an exploration rate specifying the probabil-

ity of selecting a non-greedy action, ε, is specified in advance.

This strategy is popular for its simplicity and effectiveness (Powell, 2011;

Russell & Norvig, 2010; Sutton & Barto, 1998). These methods choose a suboptimal step

at random throughout the course of the learning period in conjunction with the specified ε.

This guarantees that as the number of action selection opportunities goes to infinity, that

each action will be sampled an infinite number of times satisfying conditions for conver-

gence for some classes of value functions, but with no guarantees in the applied case since

infinity is a long time (Russell & Norvig, 2010; Sutton & Barto, 1998).

Several derivatives of this approach exist in the literature such as ε-first and

ε-decreasing. ε-first simply places the fraction of the episode, of length T , that is intended

to be exploratory at the beginning of the episode. So, the policy is dependent on the current

step with random action chosen prior to εT after which the greedy policy is followed. The

30

general idea with ε-decreasing is to allow ε to decrease with the number of iterations.

Versions of this policy exist that leverage the number of steps in an episode and the number

of visits to a state in order to adjust the policy. Let Nn(s) be the number of times an agent

has visited state s by iteration n,

εn(s) =
c

Nn(s)
, (12)

where 0 < c < 1 is our initialization constant. So an exploratory action is chosen with

probability εn(s) and the exploratory policy chooses a with probability 1
|A|

and the prob-

ability of the policy selecting action a in state s, Pn(s, a) , is at least ε
n(s)
|A|

. The result

of this approach is that each state will still be visited infinitely often even as the level of

exploration decreases since (Powell, 2011),

∞∑
n=1

Pn(s, a) =

∑∞
n=1 ε

n(s)

|A|
= ∞. (13)

Multiple variations of this approach are found in the literature that employ

similar strategies to address the challenge of adjusting the ratio of exploration and exploita-

tion (Powell, 2011; Sato & Kobayashi, 2000; Sorg, Singh, & Lewis, 2010; Sutton & Barto,

1998; Tran-Thanh et al., 2010). ε-least-taken for example,

ε = 1− min(εan,t, 1), (14)

where,

εan,t =
4

4+ n2
, (15)

andn is the number of times action awas selected prior to trial t (Sato & Kobayashi, 2000).

One potential disadvantage of ε approaches is that the random actions are selected with no

regard to the information that has been obtained through previous sampling (Kaelbling et

al., 1996).

31

Value difference based exploration (VDBE) is a another recent approach,

ε(st, at, σ) =
1− exp −|Qt+1(s,a)−Qt(s,a)|

σ

1− exp −|Qt+1(s,a)+Qt(s,a)|
σ

, (16)

where σ is a positive constant called the inverse sensitivity that must be tuned for each

environment and task (Tokic, 2010). Note, however, that the fraction of the time to explore

is reported as more intuitive to set than the scaling parameter, the temperature, employed by

Boltzmann exploration techniques which make use of the information available regarding

the value of state-action pairs to inform the level of exploration and exploitation (Sutton &

Barto, 1998).

b. Boltzmann Exploration

Rather than simply choose an action at random Boltzmann exploration, al-

ternatively referred to as a softmax action selection rule, makes use of the estimated value

of the action, making the probability of choosing an action proportional to the value of its

estimated value (Powell, 2011; Sutton & Barto, 1998). In our use, we adapt Boltzmann as

shown below to overcome numerical precision error as the estimated value of each state-

action pair divided by the scaling parameter goes to infinity, Q(s,a)
τ
→ ∞, an issue also

identified by Hasselt as well (Hasselt, 2010).

P(ai|π(s)) =
exp

Q(s,ai)−Qmax(s,a)
τ∑

i exp
Q(s,ai)−Qmax(s,a)

τ

, (17)

where τ is a parameter known as the temperature. This parameter serves as a scaling

parameter making the probability of selecting a greedy action go toward 1 as τ → 0 and

producing a more exploratory sampling policy with larger values of τ. As with the ε-greedy

techniques the level of exploration is often decayed over the course of the episode. Similar

strategies are employed to achieve this effect.

In the following section, we will discuss two techniques that leverage in-

formation regarding the statistical quality of that estimate to determine the appropriate

32

exploration policy, interval estimation and upper confidence bound. For detailed compari-

son of Boltzmann and ε-greedy exploration that discusses when the techniques should be

equivalent, see Appendix B.

c. Interval Estimation and Upper Confidence Bound

Methods from statistical sampling and experimental design have been ap-

plied successfully to this area. Interval based techniques, such as interval estimation, use

measures of the uncertainty associated with an estimate, such as the variance or standard

deviation, to determine the exploration policy (Kaelbling et al., 1996; Powell, 2011). The

interval estimation algorithm, attributed to Kaelbling, takes this approach. The algorithm

treats the action selection problem by maintaining an estimate of the expected value of an

action as well as the standard deviation. The policy is,

π(s) = max
a

(θ+ zασ
n
a) (18)

where σna is the estimate of the standard deviation ofQ(s, a) and zα is a parameter that de-

termines the size of the interval. The general idea being that as the number of observations

of a (s, a) goes to infinity the standard deviation goes to zero, for a stationary environment.

(Strehl & Littman, 2005, 2004). The upper confidence bound sampling algorithm (UCB)

takes a similar approach, using a different scaling factor to apply to the standard deviation.

π(s) = arg max
a

{θ+ Cmax

√
2 lnn
N(s, a)

} (19)

where Cmax is the maximum possible contribution, but in practice an estimate of the

95th percentile for is used, and N(s, a) is the number of times action a has been sampled

(Powell, 2011).

d. Other Recent Approaches

Peeters et al. describe a learning automata approach to dynamically ad-

just the temperature on a Boltzmann function based on the action probabilities of multiple

33

agents (Peeters, Könönen, Verbeeck, & Nowé, 2008). Still and Precup provide an infor-

mation theoretic approach to the exploration and exploitation problem, suggesting two ap-

proaches that incorporate the prediction accuracy (Still & Precup, 2012). Scott approaches

the problem from a Bayesian viewpoint, using observation and MC methods to provide a

parameter free method for determining when to explore and when to exploit.

Rather than adjust the policy-based on the variance of the estimate, Moody

accounts for uncertainty by adjusting the value estimate itself (Moody & Saffell, 2001;

Moody, Liu, Saffell, & Youn, 2004). He penalizes the state-action value estimate using

techniques based on Sharpe’s ratio,

St(s, a) =
Qt(s, a)

σ
Q(s,a)
t

, (20)

where the denominator represents the standard deviation of the long-term estimate of the

value of a given (s, a) at time t, and the Sterling ratio,

St(s, a) =
Qt(s, a)

δmaxt Q(s, a)
, (21)

where the denominator represents the maximum negative change in the value of the long-

term estimate observed up to the current time (Moody & Saffell, 2001; Moody et al., 2004).

Using the Sterling ratio as a basis, he develops his downside deviation ratio (DDR), which

penalizes the value estimate for downside variation, rewarding large positive returns and

penalizing negative returns only, since his primary application for this technique is stock

trading, where upside variance is often desireable.

DDRt =
Qt(s, a)

1
t

∑t
i=1min(Qt(s, a), 0)2

(22)

This approach accounted for uncertainty by biasing the estimator against

poorly performing state-action pairs, introducing estimation error for the value estimator,

but positively impacting overall performance (Moody & Saffell, 2001; Moody et al., 2004).

34

3. Measures of Learning Performance

The value estimate calculated by the agent for each state-action pair provides the

agent with a measure of goodness associated with each state-action pair and the accuracy

of this approximation provides a means of comparing the relative performance of algo-

rithms on similar tasks (Kaelbling et al., 1996). In addition to value approximation error,

additional measures regarding the performance of algorithms and policies are eventual con-

vergence to the optimal policy, speed of convergence, and regret. A discussion of these

measures and their practical usefulness is described below.

a. Convergence

Several RL algorithms have been shown to be provably optimal in the limit,

such as Q-learning (D. P. Bertsekas, 1995; Kaelbling et al., 1996; Powell, 2011; Watkins

& Dayan, 1992). Convergence in the limit does not provide practical benefit in most real-

world applications and this measure while relevant to the theoretical body of knowledge of

the community, does not provide a ready means of evaluating an algorithms performance.

b. Speed of Convergence

This measure suffers from the same problem as convergence in the limit,

since guarantees of optimality often only arise in the limit. Kaelbling suggests a met-

ric such as the speed of convergence to near optimality, but concedes that this is also ill-

defined and that measures based purely on speed of convergence might lead to unintended

consequences in algorithm selection, such as incurring excessive penalties on the road to

optimality (Kaelbling et al., 1996). On practical option often used to measure learning

speed for sequential tasks in the literature is simply the mean number of times a goal state

is achieved in a set period.

c. Regret

Regret provides a useful measure that captures the same information as mea-

sures related to convergence, but in a meaningful metric. Regret is defined as the expected

35

loss of reward or utility due to a deviation from the optimal policy (Audibert, Munos, &

Szepesvári, 2007; Kaelbling et al., 1996; Kakade, Lobel, & Nazerzadeh, 2010; Kuleshov

& Precup, 2010; Blum & Monsour, 2007).

LT = T max
a
r(a) −

T∑
t=1

Rt, (23)

where T is the total number of action selection opportunities in the episode and r(a) is

the reward received for action a. Kaelbling et al. cite a preference for this measure, but

laments the fact that results documenting the regret of RL algorithms is not often available,

though this has changed in more recent literature (Kaelbling et al., 1996; Blum & Monsour,

2007; Kocsis & Szepesvári, 2006; Tran-Thanh et al., 2010). Regret is used extensively as a

measure of performance of algorithms used to solve n-arm bandit problems. For a Bayesian

view of this problem see Appendix C.

d. Approximation Error

The accuracy of the value functions itself can provide insight into an al-

gorithms performance as well especially when measured in conjunction with regret. The

approximation error is the difference between the true value of a s, V(s) , and the approx-

imation arrived at by RL algorithm, V̂(s) . This measure can be examined for each s or,

as suggested by Powell, as an aggregate across all s based on the frequency with which

s is visited. Using his notation where v(1) is the error associated with the first algorithm

to be compared, p(1), is the fraction of the time that the algorithm visited a (s, a) given

algorithm one,

v(1) =
∑
s

p(1)‖V(s) − V̂(1)(s)‖. (24)

This measure treats all states, and could be applied to the estimates of state-action pairs,

equally in the evaluation of the algorithms performance. Alternatively, based on the ap-

plication, a weighting scheme might be appropriate tailoring error bounds based on the

state-action pair’s relevance to the achievement of the task goal (Powell, 2011).

36

e. Frequency of Optimal Action Selection

This measure provides an objective measure of performance bases simply

on a ratio of the number of times the best action was selected for a given state and its com-

plement (Kuleshov & Precup, 2010). This metric can be shown over-time or treated as an

episodic measure. This is independent of the reward structure and the discount parameter

often used in the estimation of the long-term expected reward of a state-action pair. During

a learning session one would expect that this value would start out fairly low and would

move toward 1 as the learning period progressed, but is highly dependent on the choice of

stochastic policy and the ratio of exploration and exploitation. Exploration and exploitation

is just one consideration in placing RL into a more human-like setting. Cognitive architec-

tures provide a potential framework to allow the incorporation of RL methods into a model

of the human information processing system.

B. COGNITIVE ARCHITECTURES

Cognitive architectures show great potential, but several limitations to their use in

modeling and simulation applications currently exist. The first of these limitations is the

lack of consistent benchmark environments and methodologies. This poses problems for

validation efforts, suggesting that a context or use case-based approach might be more

appropriate (Zacharias et al., 2008). A second limitation is the time required to develop

and populate cognitive architectures. This relates to the third limitation, a limited ability

to learn. New approaches to learning are required to overcome this brittleness problem

encountered when architectures reach the limits of their domain knowledge. Another con-

sideration, rather than limitation, is identifying the correct level of abstraction when repre-

senting human cognition for each use case. This is important since the ability to represent

fine-grained detail within the information processing system exists, but the technology to

verify and validate these structures does not. Future work is required in the following

areas: tools to facilitate architecture development and instantiation, methodologies to facil-

itate knowledge base development and enhance explainability of developed models, meth-

37

ods for modeling groups, identifying the appropriate use of learning, and use-case based

validation (Zacharias et al., 2008). This section will provide an overview of the general

information-processing model of cognition, issues with cognitive modeling, and several of

the more prominent cognitive architectures currently in use.

1. Considerations in Cognitive Modeling

Human cognition can be conceptualized using the information processing model

formulation, which serves to enable experimentation and analysis as well as hypothesis

generation (Wickens & Hollands, 2000). It is important to note that this model does not

strive to identify where in the brain processes take place, but simply acknowledges that

these processes must occur somewhere, leaving it to others to conduct empirical studies for

the purpose of identifying which sections of the brain are involved with the different pro-

cesses required by the general information processing model (Anderson, 2005; Anderson

& Schunn, 2005). The model in Figure 5 is representative of the information processing

model as related by Wickens and generally accepted in the human factors and cognitive sci-

ence communities (Wickens & Hollands, 2000). Note that the software agent framework

from Russell and Norvig mirrors this functionality at a more abstract-level. This should not

be surprising, since artificial intelligence seeks to develop more capable software agents by

emulating and understanding human behavior (Russell & Norvig, 2010).

38

Figure 5: Information processing model of human cognition.

Information from the environment received by the sensory receptors enters into per-

ception through sensory processing. Selective attention assists an observer in identifying

which cues from the environment are relevant for processing given the current task and sit-

uation. Perception serves to provide meaning to the information received from the sensors,

sometimes referred to as sense-making.

Two important characteristics of perceptual processing are that it is generally thought

of as automatic and that it is driven by both bottom-up processing of sensory inputs and

top-down processing of information from long-term memory regarding the current set of

percepts from the environment (or situation) and expectations based on past experience.

39

Wickens distinguishes between perception and cognition based on the processing time as-

sociated with each, stating:

cognitive operations generally require greater time, mental effort or attention.
(Wickens & Hollands, 2000)

Cognition typically involves operations that utilize working memory. Working

memory is characterized as a finite resource, that is highly vulnerable to disruptions based

in attention. Once information has been rehearsed above a threshold it moves into long-

term memory, to be retrieved as needed based on associations with other information from

the current perceived state. Note the similarity with RL, whose main objective is to learn

to map states to actions through a similar mechanism of association. Wickens provides

only a brief treatment of response selection and execution, generally stating that an action

from the potential actions is selected and in essence scheduled for performance just as in a

discrete event system. The feedback loop is intended to represent two points (Wickens &

Hollands, 2000):

• Flow of information can begin at any point in the system.

• The feedback loop is near continuous.

This is also a brief allusion to perceptual control theory a complementary view that

makes the case that humans are control systems that rely on perception to maintain control

of the system and that behavior can be managed by controlling ones perception (Powers

& Treval, 1973). The attention component shows the role of attention in the process. The

allocation of this finite resource drives the formation of perception and response selection,

impacting the entire feedback loop. Attention interacts with long-term memory, making use

of prior experience to allocate attention. This use of prior experience to learn what elements

of the current perceived state are important again calls to mind concepts from reinforcement

learning. The concept of divided attention impacts perception significantly. Operators

attending to multiple tasks in an uncertain environment must divide their attention between

40

cues supporting each of the tasks. This divided attention degrades their ability to correctly

attend to either task. This is a prime example of the quantity versus quality trade-off in

terms of task performance and highlights the relative conceptual importance of attention as

a means of influencing performance and makes a strong argument against multitasking.

The human information processing framework serves as a source of inspiration for

placing realistic constraints on simulation based representations of human cognition. Taat-

gen and Anderson identify several constraints on cognitive modeling from the perspective

of trying to replicate human cognition (N. A. Taatgen & Anderson, 2008). These con-

straints are proposed as considerations when developing cognitive architectures intended

to replicate human cognition and serve as useful check points and points of comparison

between architectures.

The first of these is working memory capacity, which serves the purpose of main-

taining a representation of the current task environment and whose limitation is supported

by Millers (1956) empirical work as referenced by Taatgen and Anderson. The authors de-

scribe the working memory constraint as one on cognitive function as opposed to a simple

limiter on capacity. They further describe working memory as a relevance filter on percep-

tion, ensuring that the cognitive system is focused on relevant information (N. A. Taatgen

& Anderson, 2008).

The second constraint on cognitive modeling is the serial bottleneck (N. A. Taatgen

& Anderson, 2008). A debate exists regarding the presence of a bottleneck in central pro-

cessing in human cognition centered around the allocation of attention to multiple streams

of processing. It is thought that capacity constraints exist within peripheral processes, but

that a more significant constraint exists in central cognition (Anderson, 2005; Anderson

& Schunn, 2005). A common example used to illustrate this is the fact that humans can

process multiple streams of perception and execute multiple simultaneous tasks, but can-

not think about two things simultaneously Broadbent(1958) (Anderson, 2005; Anderson &

Schunn, 2005). Through practice, however, humans have been shown to reduce the need

for central cognition in select low-level cognitive tasks by developing a level of automatic-

41

ity that enables some level of parallel processing which is thought to assist in overcoming

the constraint in central processing (Anderson, 2005; Anderson & Schunn, 2005).

Perception and motor system performance can be informed in great detail from

empirical work, at least in regard to performance measures such as response time and signal

detection, but the problem of informing learning from empirical work is considered more

challenging. Taatgen and Anderson consider a model more constrained if it is required to

learn its own knowledge, from either direct instruction or feedback, as opposed to having

the knowledge specified by the modeler. This is particularly relevant for RL, where the

entire task is to learn from interaction with the environment. This highlights a common

technique employed to speed RL, the incorporation of domain knowledge. Taatgen and

Anderson also state that learning can occur through examination of the environment and

the identification of patterns, very much in line with RL and Klein’s recognition-primed-

decision making (N. A. Taatgen & Anderson, 2008; Klein, 1993).

Neuroscience provides two additional constraints that arise in discussion of cogni-

tive architectures: constraints at the level of individual brain cells and constraints at the

global brain architecture level. Two views of the impact of individual brain cells appear

in the literature. The first view, reductionism, is that the characteristics of individual brain

cells are not required to develop an understanding of human cognition (N. A. Taatgen &

Anderson, 2008). The second view is that the neurons serve as important constraints on

cognitive architectures, but this view raises the binding problem and the catastrophic inter-

ference problem (N. A. Taatgen & Anderson, 2008). The binding problem is how cognitive

systems group features, or variables together. From an RL point of view, this speaks to the

learning of the values of state-action pairs. The catastrophic interference problem refers to

the fact that previously learned knowledge can be unlearned.

Cognitive architectures can now be informed by the results of work from neuro-

science that identifies regions of the brain associated with certain functions. One of the

most interesting open questions regarding cognitive architectures is the level of detail nec-

essary to achieve generally intelligent agents (Laird & Wray III, 2010; Laird, 2008). From

42

a practical applied standpoint this question is really, what level of detail is required for the

use case, since as Box says, “All models are wrong, some are useful.”

2. Recognition-Primed Decision Making and Goals, Operators, Methods,
Selectors

Recognition-primed decision making (RPD) developed out of the study of natural-

istic decision making (NDM). NDM researchers seek to understand how individuals build

expertise and apply it to decision making. In this paradigm, expertise is defined by explicit

knowledge, in the form of facts and rules, and the more valuable tacit knowledge, such as

the ability to recognize patterns, make subjective judgements, and make use of mental mod-

els, see Figure 6. Explicit knowledge is well represented in by first-order logic type rules.

Tacit knowledge gained over-time by experience with a given situation or state of the world.

Recognition of a given state that had been experienced before and an understanding of what

actions are appropriate in that state are at the heart of RPD. The recognition-primed deci-

sion model describes how individuals match pattern to recognize a situation and depending

on their expertise with that situation either leverage that experience to select an action or

with less positive experience in a given situation they might mentally simulation potential

outcomes of action alternatives (Klein, 1993, 2008). So, from this viewpoint, RL would

be used to build tacit knowledge and as the RL algorithm converged this would lead to a

transformation of those rules into explicit knowledge.

43

Figure 6: Recognition primed decision making (Klein, 1993).

Goals, Operators, Methods, and Selection (GOMS) task analysis provides a useful

framework for analyzing and representing goal-directed behavior cite Card,Moran, Newell

44

(John & Kieras, 1996; Olson & Olson, 1990; Oyewole & Haight, 2011; Craig et al., 2012).

GOMS derived first order logic rules are a form of cognitive task analysis that reduces

human interaction with a computer down to first principles. We can also use GOMS frame-

works to drive autonomous behavior. In this sense, the goal is the objective the agent

is seeking to obtain, the operators are actions that can be performed to obtain the goal,

methods are sequences of operators that accomplish a goal, and selection rules adjudicate

conflict resolutions between methods. This type of framework has been implemented ef-

fectively in the form of first-order logic rules in productions systems, such as CLIPS. Many

of the existing cognitive architectures leverage production systems and GOMS like rules to

represent domain knowledge and drive behavior (N. A. Taatgen & Anderson, 2008; Sun,

2007b; Laird & Wray III, 2010).

3. Review of Cognitive Architectures

This section will review three of the more prevalent cognitive architectures in broad

use: Atomic Components of Thought (ACT-R), State, Operator, and Results (SOAR), and

Connectionist Learning with Adaptive Rule Induction On-line (CLARION).

a. Active Components of Thought

ACT-R, whose development started in 1983, has traditionally focused on

serving as a platform for research on cognition and representation of fundamental psycho-

logical processes, see Figure 7 (Zacharias et al., 2008). ACT-R uses a combined form of

symbolic and numerical representation with production rules firing based on log odds of

success of a particular rule in a given situation, its activation level (Sun, 2007b). ACT-R

deals with the notion of working memory capacity through its use of declarative memory

which decays as the size of the information pushed in increases. In this manner, ACT-R

constrains the agent’s information processing ability based on a capacity based represen-

tation of working memory (N. A. Taatgen & Anderson, 2008). ACT-R has been used in

a number of applied settings to include the modeling of adversarial behavior (Zacharias et

al., 2008).

45

Figure 7: ACT-R top-level conceptual diagram.

ACT-R imposes the serial bottleneck in central processing by allowing only

one rule to fire at a time in its central production system and by limiting the number of cog-

nitive steps that can be taken in a given decision cycle (N. A. Taatgen & Anderson, 2008).

ACT-R further constrains its production system by limiting matches to items currently in its

buffers implying that it cannot match against all items in its declarative memory and must

instead retrieve and examine one item at a time. Learning occurs in ACT-R by combining

rules over-time into new sets of behavior that are commonly associated with each other,

transforming general knowledge into task specific knowledge over-time (N. A. Taatgen &

Anderson, 2008).

46

b. State Operator and Results

The SOAR architecture has gone through eight major versions between

1982 and 2007, all maintaining a pure symbolic processing approach and using production

system rules for long-term memory (Laird & Wray III, 2010; Laird, 2008). The traditional

SOAR, up through SOAR 8, used symbolic long-term memory, representing knowledge

as a set of production system rules, and short-term memory, which maintains a current as-

sessment of the situation based on perception of the current state informed by long-term

memory.

SOAR is characterized as taking a functional approach to the representation

of working memory capacity by Taatgen and Anderson, where limits on working memory

serve to separate relevant from irrelevant information in the given task context (N. A. Taat-

gen & Anderson, 2008). The general processing cycle in SOAR is to receive an input from

perception into short-term memory, update the agent’s goal based on the new information,

and evaluate and select operators to achieve the goal, much like a GOMS framework, see

Figure 8. Fixed decision procedures then select the appropriate operator, with arbitrary

conflict resolution mechanisms in place. The actions associated with the chosen opera-

tor are executed by the rule-based system and the output passed to the environment for

execution (Laird & Wray III, 2010; Laird, 2008).

SOAR is capable of learning new rules from direct instruction has been used

in a variety of applications ranging from expert systems to the control of autonomous agents

(N. A. Taatgen & Anderson, 2008). SOAR has been used in military simulations to replace

human role players and by the Institute for Creative Technologies (ICT) at the University

of Southern California to control virtual characters for game-based training applications

(Zacharias et al., 2008). Laird highlights extensions to the traditional SOAR in the latest

version, SOAR 9, to provide capability for long-term memory representation, additional

learning mechanism, and non-symbolic processing (Laird & Wray III, 2010; Laird, 2008;

Wray & Jones, 2006).

47

Figure 8: SOAR top-level conceptual diagram.

Laird states that the goal of SOAR 9 was to retain the strengths of the orig-

inal SOAR while expanding SOAR to more closely resemble human capabilities (Laird &

Wray III, 2010; Laird, 2008). The new version of SOAR incorporates a notion of activa-

tion into its representation of working memory, inspired by ACT-R. RL is integrated into

the selection of operators using an ε-greedy algorithm. The concept of emotion is repre-

sented in the current version of SOAR using appraisal theory. Appraisals lead to emotions,

eventually being expressed as an intensity of emotion, which is used in conjunction with

RL as part of the reward structure. Declarative knowledge can be built up from information

that first moves into working memory. Episodic memory, task independent information

that can be used to aid in reasoning across tasks, contains memory of experience over-time

48

providing an idea of context. This is believed to be a key enabling capability for mental

simulation and prediction, two functions believed to enable decision making under condi-

tions of uncertainty.

c. Connectionist Learning with Adaptive Rule Induction On-line

CLARION is a cognitive architecture consisting of four subsystems: the

action-centered subsystem, the non-action centered subsystem, the motivational subsys-

tem, and the meta-cognitive subsystem, see Figure 9. Each subsystem provides two levels

of knowledge representation, a top-level for explicit knowledge representation and a bottom

level for implicit knowledge representation. These bottom-up associations between action,

state and outcome inform action selection (N. A. Taatgen & Anderson, 2008). Interaction

occurs between the two levels during action selection and learning. The action-centered

subsystem controls all actions, external to the agent and internal. The non-action centered

subsystem stores and maintains general knowledge. The motivational subsystem deter-

mines motivations for perception, action and cognition. The meta-cognitive subsystem

controls the system of systems, providing central control (Sun, Zhang, & Mathews, 2006).

49

Figure 9: CLARION top-level conceptual diagram.

50

-

ACS NACS

~
Action Centered Non-Action-Centered

Explicit Explicit Representation
Reuresentati on ~

l J/ /f'
L i J, .If\

Action Centered
\

Non-Action Centered

'
Implicit Implicit Representation , Representation

• '
J ~

" I

Reinforcement

Goal St111ctlu·e
' _ .,.

-4 7

~
Goal Setting

Drives
Filtering ... , Selection
Regulation

MS MCS

Clarion Cognitive Architecture

....
"7'

-

CLARION uses rule systems implemented in a neural network to constraiin

the computational power of the system and focus on more local situations (N. A. Taatgen &

Anderson, 2008). CLARION has mechanisms for implicit and explicit learning (N. A. Taat-

gen & Anderson, 2008). CLARION is described by Sun as a hybrid connectionist-symbolic

system and has been applied to modeling organizational decision-making, with CLARION

based agents interacting as part of an organization and in an analysis of survival strategies

of tribal societies. The authors conclude with the need to explore the implications of in-

dividual cognition on political systems, justice and individual motivating factors (Sun &

Naveh, 2007).

4. Learning in Cognitive Architectures

The degree of learning to include in agents depends on the purpose of the modeling

effort and the level of sophistication in the agents. The general problem is to allow agents

to learn which action choices lead to desirable outcomes within the agent environment.

This has advantages over trying to script every possible state an agent might encounter,

which will be inherently brittle. Learning in cognitive architectures intended for social

simulation can be further characterized by the objective of modeling individual and group

human behavior as realistically as possible. Multiple approaches to the problem exist with

various advantages and disadvantages (Brenner, 2006; Sutton & Barto, 1998). The use of

learning techniques facilitates the development of adaptive agents that update their behav-

iors based on information received over the course of a simulation run. This capability

enables dynamic communications patterns, the changing of affiliations over-time, and be-

havior changes in response to situations in the environment. The use of learning agents can

also potentially enable verification of the dynamics of the environment.

ACT-R implements learning in the determination of activation levels in its declar-

ative memory. The activation level of an item in declarative memory is linked to the fre-

quency of its use, with decays in activation levels being experienced over periods of in-

activity, in line conceptually with reinforcement learning. The activation level represents

the probability that the item in memory will be needed given a certain state of the envi-

51

ronment. Production rules retrieve these chunks from memory through a buffer, with the

activation level linked to the retrieval time. Each production rule has an associated util-

ity value, continually updated by learning algorithms, based on the notion of a estimated

cost and probability of reaching the goal state given the selection of that rule. ACT-R also

adds items to declarative memory and constructs new production rules, similar to SOAR,

by combining associated rules, rules fired sequentially, into a single rule (N. Taatgen et al.,

2006; Wray & Jones, 2006). ACT-R and SOAR contrast with CLARION in their approach

to learning (Sun, 2007b).

CLARION combines a bottom up and top down approach to learning, with agents

that use model free methods from RL, such as Q-learning, to determine actions choices

from the bottom up, under the supervision of top down rules and chunks similar to those

found in ACT-R or SOAR. The output of both bottom-up and top-down processes is an

action choice. Feedback for these processes comes to the agent in the form of an internal

and external signal. Internal feedback exists in the form of motivation, external feedback

must be specified by the modeler. Learning and action choices reside in the action centered

subsystem with goals being specified by the motivational subsystem and the meta-cognitive

subsystem. The meta-cognitive subsystem provides the agent with information regarding

its own internal state based on internal feedback from the motivational subsystem (Sun,

2007b). The use of motivation and its impact on goal setting is consistent with the updated

view of Maslow’s hierarchy of needs.

5. Agent Based Models, Cognitive Modeling, and Complexity

Agent-based modeling is defined by the National Research Council as the com-

putational study of systems that are complex in the following sense: (1) the systems are

composed of multiple interacting entities and (2) the systems exhibit emergent properties

properties arising from entity interactions that cannot be deduced simply by averaging or

summing the properties of the entities themselves (Zacharias et al., 2008). Multi-agent

systems as defined by Shoham and Leyton-Brown are those systems that include multi-

ple autonomous entities with either diverging information or diverging interests, or both

52

(Shoham & Leyton-Brown, 2009). Ferber refers to multi-agent systems as societies of

agents that interact and coordinate their behaviors toward some common goal (Drogoul

& Ferber, 1994; Ferber, Gutknecht, & Michel, 2004). Ferber goes further to distinguish

agent centered multi-agent systems (ACMAS), which he refers to as the classical view of

MAS, from what he characterizes as organization centered multi-agent systems (OCMAS).

Where ACMAS was centered on cognitive states of the agents being modeled, OCMAS

focuses instead on roles, groups, tasks and interaction protocols. Gilbert, describing agents

from a MAS point of view attributed to Wooldridge and Jennings, states that agents “are

processes implemented on a computer that have autonomy (they control their own actions);

social ability (they interact with other agents through some kind of language); reactivity

(they can perceive their environment and respond to it); and pro-activity (they are able

to undertake goal-directed actions) (Gilbert, 2008). The relationship between agent based

models and multi-agent systems is loosely defined at best. Both leverage similar concepts

and techniques, so it appears that the primary difference rests in the use case.

Agent based modeling and multi-agent systems share in common the idea of intel-

ligent agents that use some level of information from the environment in conjunction with

rule sets or algorithms of varying complexity to select actions that allow them to interact

with their environment and other agents. The line between these two areas is not distinct,

with the clearest distinction possibly being formed by intended use and intended environ-

ment. From this perspective, their approach is consistent with the definition of an agent

from the field of artificial intelligence as stated by Russell and Norvig as anything that can

be viewed as perceiving its environment through sensors and acting upon that environment

through actuators (Russell & Norvig, 2010). Both fields focus on the use of software agents

as members of complex systems.

The discipline of cognitive modeling seeks to represent human cognition within

software agents for a variety of uses through the development and application of cogni-

tive models and cognitive architectures (Zacharias et al., 2008). Cognitive architectures,

described in some contexts as micro-level formal models, are simulation based models of

53

human information processing often built to emphasize distinct aspects of cognition, based

on the use case. Agent based social simulations represent human cognition at varying lev-

els of sophistication (Zacharias et al., 2008), but typically adhere to the most rudimentary

level of an agent, a reflex agent, as defined by Russell and Norvig and reviewed previously.

Summarized here, an agent senses information, or percepts from its environment, using

sensors, updates its internal representation of the world, and selects actions based on this

updated internal state (Russell & Norvig, 2010). Depending on the needed level of reso-

lution the agent can represent either an individual or group of individuals, though the use

of cognitive architectures in the representation of group cognition is not well developed

(Zacharias et al., 2008). Sun points out that agent based social simulations and cognitive

architectures have developed in relative isolation from each other, but that the use of ap-

propriate cognitive architectures could benefit agent based social simulation by providing

a realistic basis for the representation of individual agents. Sun further identifies cognitive

social simulation as a path forward for the intentional combination of these two fields into

cognitive social simulation (Sun et al., 2006). While the potential for agent based social

simulations and cognitive architectures to enable a multi-level examination of human be-

havior including the sociological and psychological perspectives respectively exists (Sun,

2007b), the National Research Council is less clear on the use of cognitive architectures to

represent group cognition (Zacharias et al., 2008).

A cognitive architecture provides the specification for those features of an intelli-

gent agent or system, depending on the use case, that are invariant over-time and across

applications (Langley et al., 2009). The development of cognitive architectures, fixed in-

frastructures to support the acquisition and use of knowledge, springs from the pursuit of

generally intelligent entities as opposed to specialized algorithms. Generally intelligent

entities are distinguished by their ability to be applied to a wide variety of tasks, using

diverse knowledge and experience in complex environments (Laird, 2008). Cognitive ar-

chitectures differ from cognitive models, which can be thought of as more narrowly scoped

54

micro models while cognitive architectures generally seek to implement a unified theory of

cognition (Zacharias et al., 2008).

Sun defines a cognitive architecture broadly as a “domain generic computational

model, capturing the essential structure and process of the individual mind (Sun et al.,

2006). Taatgen and Anderson describe cognitive architectures as “on the one hand echoes

of the original goal of creating an intelligent machine faithful to human intelligence, and

on the other hand attempts at theoretical unification in the field of cognitive psychology

(N. A. Taatgen & Anderson, 2008). Multiple cognitive architectures exist and have been

applied to a variety of use cases, but the common components of a cognitive architecture,

as identified by Langley et al. and Laird, include short and long-term memory, language

to represent elements stored in memory, and functional processes that leverage these struc-

tures and is consistent with Wickens human information processing view (Laird, 2008;

Wickens & Hollands, 2000). The National Research Council expands the list of cognitive

and perceptual processes to include: attention, situational assessment, goal management,

planning, meta-cognition, learning, action selection, and memory (Zacharias et al., 2008).

Psychologically oriented cognitive architectures are important because they can facilitate

the understanding of human cognition, can inform understanding of societal-level collec-

tive behavior, and are relatively realistic and human like (Sun, 2007b). Cognitive architec-

tures within social simulation serve to add structure and specificity to the key component

of these models, the individual actors responses that provide the link between the micro

and macro-levels.

Agent based models and multi-agent systems focus on the use of intelligent agents

within simulation for a variety of purposes. The level of sophistication the agents employ

varies by use case in these settings as does the need to represent human like cognition

and behavior. Cognitive architectures focus on the representation of human cognition and

behavior by seeking to replicate the functions of the human information processing system.

Sun proposes the creation of cognitive social simulations, which combine these disciplines

allowing for more detailed representation of human behavior at the micro-level upon which

55

agent based modelings macro-level analysis rests (Sun et al., 2006). The efficacy of this

approach has yet to be fully explored in the literature, but holds promise as a means to

provide sophisticated behavior within agents while maintaining traceability to conceptual

models required for validation. The link between the micro and macro system behavior

level will be expanded below.

The study of complex social systems go back hundreds of years with Adam Smiths

The Wealth of Nations (1776) being one of the earliest discussions on the topic (Smith,

1966). Smiths invisible hand guides self-interested rational agents into well formed market

structures (Miller & Page, 2007). The traditional tools of social science often constrained

the modeling of social systems. Tools developed in the study of complex systems, such

as agent based modeling, have been identified and come into use by researchers studying

complex social systems (Tesfatsion & Judd, 2006). The relation between complex systems

research and complex social systems is especially relevant to understanding the transition

of a society from a relatively unstable state, such as during an open insurgency, to the more

stable post conflict state, with an inactive or non-existent insurgency. Understanding the

perception, motivations, and intention of the diverse actors at play in a conflict ecosystem

are essential to gaining an understanding of how the social system can be transitioned from

the undesirable chaotic state of insurgency, to the more stable and desirable post conflict

state (Mansoor, 2007). Stable, in this context, is certainly relative to the given social system

and its concept of normal.

Miller and Page state that complexity arises in a system when dependencies among

the elements of the system become important to the normal behavior of the system to such

an extent that the removal of one element from the system alters the systems behavior to

an extent much greater that intuitively expected given the relative perceived contribution of

the removed element (Miller & Page, 2007). These complex systems provide challenges to

those seeking to understand their responses under varying conditions. Social systems tend

toward complexity, with multiple intelligent social agents interacting through a variety of

processes and connections. Systems such as these are non-linear and do not lend themselves

56

to analysis by decomposition, making holistic approaches more appropriate for system-

level analysis (Miller & Page, 2007).

The characteristics that make agent based simulation an attractive alternative for the

analysis of complex systems make them a viable alternative for use in examining complex

social systems. The application of agent based models to this domain also suffers from

the same limitations to their application within the field of complex systems. In addition

to these limitations, the use of these tools in the representation of social systems requires

the representation, at some level, of human behavior. A lynchpin in the future validation of

cognitive social simulation, at the macro-level, is the validation of the cognitive architecture

used, at the micro-level.

The connection between agent-based models and the social sciences is illustrated

by the field of economics, which models economic behavior as the result of rational actors,

with ties to models based on individual actors from its inception. Epstein highlights this

relationship, pointing out that certain social systems are distributed, asynchronous, decen-

tralized and dynamic, such as trade networks (Epstein, 2006). When market prices reach

equilibrium the society has executed a calculation and converged on a solution. Conver-

gence to social norms is equivalent to convergence to strategy distributions in n-person

games or to an optimal policy when mapping state-action pairs in reinforcement learn-

ing (Epstein, 2006). The first applications of simulation to the social sciences coincided

with the first uses of computers in university research settings in the 1960s (Gilbert, 2008).

Many of these early efforts focused on modeling for prediction rather than understanding-

typically the goal of most social science research. While these early efforts met with mixed

results, and served to generate healthy skepticism of simulation, an approach which gained

traction was the idea of micro-simulation. Micro-simulation modeling represents individ-

ual members of a population, based on polling or other data sources, and follows them

forward through time through a series of transition probabilities. This technique has been

successfully applied by several European nations (Gilbert, 2008).

57

An interesting aspect of agent models that Epstein devotes some time to is their abil-

ity to allow multiple social theories, which he refers to as social computations, to be active

at once in an experimental framework. Epstein, a proponent of the use of these models by

social scientists, proposes the use of agent based social simulations to facilitate interdisci-

plinary social science work. In general, Epstein adheres to what he refers to as a generative

approach to social science (Epstein, 2006). This approach relies on the use of agent based

models to facilitate the representation of individual actors with simple rule sets, what he

refers to as micro-level behaviors. These simple rule sets represent the simplest possible

representation of agent cognition. This generative approach proceeds with experimentation

with the agent based social simulation with micro-level specifications, seeking to find a set

of such specifications that produces macro-level output data that matches some historical

data set or observed social phenomena of interest.

This micro to macro-level mapping allows for the interaction of behavioral and so-

cial sciences to some degree. The successful identification of such a set of micro-level

behaviors leaves the analyst or social scientist with a screened hypothesis that has not been

rejected given the conditions of the experiment. This is a critical point to make regard-

ing this approach. In order to accept that the micro-level behaviors constitute a potential

explanatory hypothesis describing the system under study, the modeler also has to accept

that the interaction rules of the system and the data that have been used to populate the

model are accurate and valid. In some domains, this may be a minor requirement, but

in the application of these techniques to human behavior this serves as a major limitation

of the generative approach. This also highlights the need for the integration of individual

and group cognitive architectures into agent based social simulation in a more robust man-

ner. The use of psychologically oriented cognitive architectures at the individual-level in

this domain can provide structured integration between Epsteins micro-level specification

from the field of psychology and understanding of societal-level collective behavior (Sun,

2007b).

58

A needed area of research is the exploration of group cognitive architectures based

on social psychology. Architectures based on social psychology would allow the researcher

to change the level of analysis while preserving the benefits of the use of cognitive archi-

tectures as a formal specification. Cognitive architectures provide a detailed specification

of the framework of human cognition, including realistic constraints, capabilities and ten-

dencies based on cognitive processes, but possess validation concerns as well (Sun, 2006).

Epstein as well as Miller and Page describe the use of agent based social simula-

tions to explore the generation of equilibrium conditions from societies of boundedly ratio-

nal agents in decentralized locations (Epstein, 2006; Miller & Page, 2007). Gilbert adds to

this highlighting the fact that societies are made up of individual actors with dynamic, non-

linear interactions where knowledge and materials are exchanged that impact the future

behavior of the individual actors (Gilbert, 2004). The dynamic nature of the system makes

it impossible to study the society as a whole by examining individual members in turn,

since macro-level system behavior emerges from the interaction of individually motivated

actors on a dynamic landscape (Gilbert, 2004). Sun proposes the use of cognitive social

simulation to explore these interactions at multiple levels, with psychologically based cog-

nitive architectures embedded in agents within social simulation (Sun, 2006). Borrill and

Tesfatsion propose that agent based models provide a local observer view of the world as

opposed to a Gods eye view, and that this local observer view provides great insight for the

social sciences highlights the importance of the cognitive architecture specifications within

social simulation. They provide two examples of the application of agent based models to

the social sciences: one in the analysis of power consumption in the U.S. and the second in

the field of information storage design (Borrill & Tesfatsion, 2010).

The application of agent based models to the social sciences has focused on the use

of simple behaviors at the individual agent-level to generate macro-level social phenomena

as described above. Common phenomena explored include segregation, trust formation,

and resource constrained games (Schelling, 1972). The use of these models in conjunction

with cognitive architectures has not been fully explored, but is required to fully represent

59

complex phenomena such as belief revision, changing affiliations, coercion and persuasion,

and the formation of trust. The following section will discuss the topic of emergent behav-

ior, a topic often used to refer to the micro to macro link, in greater detail (Zacharias et al.,

2008).

Any discussion of agent based social simulations or agent based models will even-

tually touch on the topic of emergence (Zacharias et al., 2008). Emergence, the idea that

aggregate behavior arises from the interaction of local individual behaviors, provides one

of the more contentious points of discussion in the area of complex systems and complex

social systems (Epstein, 2006; Gilbert, 2004). The description of emergence most often

used describes emergence as the result of individual, localized behavior aggregated into

a global behavior disconnected from its origins (Miller & Page, 2007). This implies that

the macro-level system behavior is robust to changes in the micro-level system behavior

as specified in what traditional agent based model research refers to as micro-level behav-

ior and cognitive social simulation specifies in the cognitive architecture. Miller and Page

point out that emergence can occur at many levels within the system of systems, providing

natural breakpoints in some cases for distinguishing sub-systems that might not previously

have been apparent. Epstein concurs with this assessment, by characterizing emergence

as phenomena relative to the current state of knowledge describing the systems of interest

(Epstein, 2006). In this view, the definition of emergent behavior for a system under study

relates to those unexpected events or conditions that give rise from micro-level behavioral

interactions. Sun refers to this as the micro-macro link and emphasizes the central role

of cognitive architectures in this phenomenon (Sun, 2006). When emergent macro-level

behaviors are observed that correspond to phenomena, social or otherwise, observed in the

real-world system, a potential explanatory hypothesis at the micro-level has been identified

(Epstein, 2006). Those that ascribe to this view are clear that this is not the end of the

analysis, but serves to focus further empirical work with the system to accept or reject this

new hypothesis resulting from the observed emergent behavior (Epstein, 2006).

60

Miller and Page use the Law of Large Numbers and the Central Limit Theorem as

examples of theories that describe how individual behaviors generate aggregate patterns

that are robust against variation within limits (Miller & Page, 2007). The authors attribute

the effectiveness of these two theorems to the concept of disorganized complexity. The key

feature for this discussion is that the interactions of local entities tend to average out as an

increasing number of independent actors are added to the system. The system eventually

reaches a point where system-level predictions are possible through the above stated theo-

rems, but individual-level forecasts are still elusive. Gilbert concurs with this assessment

of emergence in social systems using the example that while we can identify the mission of

a political organization, the identity does not always transfer to the individuals that belong

to the organization (Gilbert, 2004).

Miller and Page coin a term organized complexity in referring to those properties of

complex systems that arise from the interaction of intentional agents in systems that provide

feedback. In these types of systems, variations no longer average out, but rather become

reinforcing causing the system to exhibit macro-level behaviors that would be termed emer-

gent in this domain (Miller & Page, 2007). From this view point emergent macro behavior

could be said to arise in systems with organized complexity as defined by Miller and Page,

resulting from the central role of the cognitive architecture specification in the case of cog-

nitive social simulation. This also meets the definition of emergence from Gilbert which

defines emergence as any phenomena arising from a system that requires new categories in

its description that are not necessary for the description of the system components (Gilbert,

2008). Going back to some of their earliest uses of social simulation, Schelling used agent

based models to study tipping points, particularly in regard to racial residential segregation

processes, providing exemplars of this micro to macro link (Schelling, 1972).

Gilbert provides several examples of what he terms emergent behavior from real

social systems. He uses as examples such phenomena such as segregation into neighbor-

hoods, the evolution of language, and migration. He points out that in social systems the

actors can actually observe and identify emergent behavior and in some cases adjust their

61

behavior with what they perceive as the emerging trend, highlighting the importance of

cognitive architectures (Gilbert, 2004). This corresponds to Miller and Pages view of sys-

tems that exhibit organized complexity, with micro-level behaviors serving to reinforce

emerging macro-level trends (Miller & Page, 2007). These cognitively aware actors reason

and make choices at the individual-level, with results apparent at the macro-level. Castel-

franchi, quoted by Sun, sums up the problem nicely: The real problem is modeling how we

play our social roles, while being unaware of the functional effects of our actions, not only

with our routine actions but even when doing something deliberately for our own subjective

motives (Sun, 2006).

Cognitive architectures play a central role in the generation of emergent behavior in

complex social systems (Sun, 2006). Emergent behavior at the macro-level stems from the

interaction of micro-level behaviors at the individual agent-level, as described above. Psy-

chologically based cognitive architectures provide structure that encapsulates the cognitive

functions of the agent and can lead to cognitive emergence, or bottom up learning, as de-

scribed by Castelfranchi (2001) and referenced by Sun (Sun, 2006). At a coarse-level, these

functions include perception, long and short term memory, and action selection. Since it is

the resulting action selection from each individual that in the aggregate leads to emergent

behavior, cognitive architectures, the action selection component in particular, implicitly

influence macro-level behavior generation at the societal-level. The use of cognitive archi-

tectures provides structure to the representation of human behavior and requires detailed

specification, enabling greater documentation and potentially aiding in the exploration of

the micro to macro link and validation efforts for this class of models (Sun, 2006). The

need to represent micro-level behaviors in order to gain an understanding of the system

under study, rather than the individual actors, leads to a discussion of the need for a holistic

approach to system analysis to inform a holistic analysis.

Agent based models are tools for holistic analysis of systems, but require a reduc-

tionist approach in the development of micro-level behaviors, a minimal cognitive archi-

tecture, for individual actors. Agents are intended to represent human behavior in the most

62

simplified manner that is still useful (Gilbert, 2008). The application of the reductionist

approach to agent based modeling simply assists in the identification of a logical starting

point for what Epstein calls the generative approach (Epstein, 2006). Discussion of the

reasons that a pure reductionist approach to complex social systems is inappropriate is pro-

vided by Miller and Page and Epstein at some length (Epstein, 2006; Miller & Page, 2007).

The arguments presented by both groups tend to center around the existence of emergent

behavior in complex systems that cannot be easily explained by simple system decomposi-

tion as was discussed in the previous section. The authors use the partitioning of economics

into micro and macro economics and the partition between the behavioral and social sci-

ences as examples from well studied fields that recognize that the reductionist view does

not fully account for system-level behaviors (Epstein, 2006; Gilbert, 2008; Miller & Page,

2007).

Agent based models provide a computational tool for use in creating a holistic view

of the system under study. Computational tools do not differ in the evaluation of their

utility from theoretical tools or mathematical tools they should be judged on their ability

to enhance science and simplify a task. Theories by contrast should be judged on their

ability to improve understanding of some phenomena of interest (Miller & Page, 2007).

Computational tools force the modeler to be precise, whereas theories expressed in natural

language can be open for interpretation (Gilbert, 2008). When modeling the system under

study from this view point, the reductionist method of decomposition of the system to

its constituent parts provides only a starting point to the development of a system-level

model. The bottom up placement of these constituents into an environment that facilitates

dynamic interaction representative of the real system completes the holistic view required

to recognize system-level behaviors.

In a similar manner, cognitive architectures provide a holistic view of human in-

formation processing and decision making. The link between cognition, or micro specifi-

cations, and macro-level social phenomena can be more fully explored through cognitive

social simulations. Starting with relatively simple cognitive models, of the type typically

63

proposed by Epstein, researchers can iteratively add complexity to the cognitive representa-

tion (Sun, 2006). Cognitive architectures consist of a system of systems replicating the hu-

man information processing system. The cognitive architecture itself takes a holistic view

of human cognition. The use of group cognitive architectures based on social psychology

could enable this same notion of multi-level modeling with cognitive social simulations.

C. A SAMPLE OF DEPARTMENT OF DEFENSE SIMULATION MODELS

This section provides a brief overview of DoD models and simulation identified

as candidates for the application of reinforcement learning and or the inclusion of some

form of cognitive architecture. We provide an introduction to the Combined Arms Analy-

sis Toolkit for the Twenty-first Century (COMBATXXI), the Infantry Warrior Simulation

(IWARS), the Assignment Scheduling Capability for Unmanned Aerial Systems (ASC-U),

and the Cultural Geography model (CG).

1. Combined Arms Analysis Toolkit for the Twenty-first Century

COMBATXXI is a Joint high-resolution, closed-form, stochastic, analytical combat

simulation developed at TRADOC Analysis Center -White Sands Missile Range (TRAC-

WSMR) and the Marine Corps Combat Development Command, Operations Analysis Di-

vision (MCCDC-OAD) (Kunde, 2005). COMBATXXI is designed to support analysis at

the brigade and below and supports the representation of light and heavy forces, air mobile

forces, future force capabilities, fixed and rotary wing aircraft, and amphibious and urban

operations. COMBATXXI has been used in support of a number of studies in support of

acquisitions activities including analysis in support of the Ground Soldier Systems anal-

ysis of alternatives (AoA) and the current Ground Combat Vehicle AoA. COMBATXXI

behaviors are implemented in the python programming language allowing great flexibility

in the creation of new behaviors to drive entity actions. Recently, the use of hierarchical

task networks have been used to provide COMBATXXI entities a GOMS like ability to

achieve goals. A need exists to improve the representation of environmental sensing and

64

knowledge representation at the individual soldier-level within COMBATXXI and to have

more adaptable agents in general.

2. UrbanSim

game-based training simulations provide practice environments that allow trainees

to develop knowledge, skills, and abilities required for the execution of real-world tasks in

a relatively risk-free and cost effective setting making them especially attractive for DoD

applications. Challenges exist in the measurement of the effectiveness of these systems

in transferring skill proficiency to real-world tasks and the validation and verification of

the simulation model and its supporting data, though the requirements for verification and

validation for a training use case are less stringent that those imposed on simulation models

designed for analysis. Unique to training systems is a need to verify that the reinforcement

provided by the training system supports the learning objectives of the system. As the

systems become more complex understanding how the system will respond to all potential

actions selected by a trainee can present challenges due to the size of the potential state

space.

The Army requires the capability to develop adaptive digitized learning prod-
ucts that employ artificial intelligence and/or digital tutors to tailor learning to
the individual Soldiers experience and knowledge-level and provide a relevant
and rigorous, yet consistent, learning outcome. (U.S. Army 2011)

UrbanSim is a DoD sponsored game-based training simulation designed to develop

knowledge, skills, and abilities associated with tactical-level decision-making in counterin-

surgency and irregular warfare operations developed at the Institute for Creative Technol-

ogy (ICT). UrbanSim relies on an underlying multi-agent simulation, PsychSim also de-

veloped at ICT, to adjudicate the effect of actions taken by the trainee at each turn and to

provide feedback to the player in the form of a numeric reward signal, graphically displayed

as a horizontal bar chart showing the percent of the maximum score the player is currently

at for each of the six categories that make up the aggregate score, (max = 600). The stan-

dard training scenario packaged with the product is intended to train students to adopt a

65

clear, hold, build strategy by selecting the actions at each turn for eleven blue units at each

of fifteen game turns. The game developers identified that the verification of all potential

paths through the training system required the use of automated mechanisms (Wansbury,

Hart, Gordon, & Wilkinson, 2010; Wang, Pynadath, & Marsella, 2012).

3. Assignment Scheduling Capability for Unmanned Aerial Systems

Unmanned systems form an increasingly important component of the surveillance

and reconnaissance capability of the U.S. and have shown their value in the last decade of

conflict in a variety of roles (Ahner, Buss, & Ruck, 2006). The efficient allocation of assets

in theater remains challenging as does the analysis supporting future procurement of this

class of systems. TRADOC Analysis Center (TRAC) conducted a UAS Mix study in 2006

and developed an assignment scheduling capability for unmanned aerial vehicles (ASC-U)

at TRAC-Monterey, in partnership with the MOVES Institute and Rolands and Associates

Inc. (Nannini, 2006).

ASC-U employs a discrete event simulation model coupled with the optimization

of a linear objective function over a finite-time horizon. ASC-U determines a feasible

schedule for UAV missions that can be successfully executed in a scenario with a specific

mix of UAVs by obtaining an optimal solution to a simplified problem that assigns available

UAVs to missions that are available or will be available within a future time horizon at set

intervals. The need exists to improve the ability of the scheduler agent to develop near

optimal plans schedules in cases with delayed and noisy rewards.

4. Cultural Geography Model

The Cultural Geogrphy (CG) model is a government owned, open source, agent

based social simulation designed to represent the population in a brigade area of operations

in an Irregular Warfare environment, see Figure 10 (J. Alt et al., 2009). CG model agents

operate within a social network updating their stances on issues of interest as new informa-

tion is received through observation or communications. The model is built on a conceptual

model developed through interaction with experts from the social sciences and is intended

66

to be modular in nature with an architecture supporting the integration of behavioral and

social modules as needed to support the modeling and analysis of a particular area of the

world during a particular time period (J. Alt et al., 2009). The basic components of the CG

model are the cognitive module, the social network module, and the infrastructure module.

The cognitive module uses Bayesian networks to represent agent internal state, with agents

representing population segments in most use cases.

Figure 10: Cultural geography conceptual model.

The CG model does not specify a cognitive architecture. The social network module

calculates the social distance between agents based on an implementation of the theory of

homophily. The infrastructure module represents essential services as multi-server queues

with finite capacity. Scenarios within the CG model are built around issues in the area

under study that are relevant to the population and the stabilizing force. Data develop-

67

ment follows a process that mirrors the counter-insurgency intelligence preparation of the

battlefield (Mansoor, 2007).

D. SUMMARY

In this chapter we provided relevant background material and reviewed the state of

the art in reinforcement learning, cognitive architectures, and several currently used DoD

simulation models. In the next chapter, we will present the novel use of an exponentially

weighted average that makes use of continuous-time as an action-value estimator in a re-

inforcement learning system and document the it performance in several benchmark and

game-based environments. In Chapter IV, we will provide an account of the application of

this approach to three different DoD simulation use cases:

• ASC-U

• COMBATXXI

• UrbanSIM

In chapter five we will discuss the use of reinforcement learning and document a

practical cognitive architecture, both applied to emerging DoD efforts in the area of human,

social, cultural and behavioral modeling within the Cultural Geography model.

68

III. DIRECT-Q COMPUTATION

This chapter details a the novel use of an exponentially weighted average that makes

use of continuous environment time as an action value estimator within a reinforcement

learning agent and improves learning speed compared to dominant temporal differencing

algorithms designed to address this problem. We develop the algorithm and provide results

of empirical benchmarking in standard benchmark and game-based domains. Emerging

results of the use of an early version of this algorithm in a variety of applications were

previously reported in several conference proceedings, an accepted in-press journal article

(S. Papadopoulos, Alt, Darken, & Baez, 2013), and student thesis work supported by this

effort (J. K. Alt et al., 2011; Ozcan, Alt, & Darken, 2011; Ozkan, 2011; M. Papadopoulos,

2010; Pollock, Alt, & Darken, 2011).

A. DIRECT-Q COMPUTATION

Delayed rewards are common in RL making the ability to efficiently assign credit to

(s, a) essential to developing an accurate estimate ofQ(s, a). The dominant approaches to

address noisy and delayed rewards in RL make use of noisy hill-climbing approaches (tem-

poral differencing). In this research, we attempt to determine if a relatively straightforward

and direct approach that uses an intuitive estimator and better accounts for environmental

change can result in improved performance over the dominant hill-climbing approaches to

this problem. Our approach develops two key ideas:

• Instead of noisy hill-climbing can we make use of the obvious intuitive estimator,

the historical reward?

• Instead of using the agent’s action count, can we make use of the environment time?

DQ-C assigns credit for all future point rewards to each visit to a (s, a), developing

an estimate based on the historical average of the long-term value of each attempt of a state-

action pair. This long-term estimate uniquely makes use of environment time rather than

69

action counts in the development of this discounted term. These estimates are then used to

calculate either the sample average or exponentially weighted average value of each (s, a).

DQ-C’s unique treatment of time allows it to adapt to changing environments more readily

than similar algorithms that do not account for time, focusing instead on system updates to

serve as a counter. In this section we develop both versions of the proposed approach. We

define the following indices,

• i: rewards, i = {1..k}, where k is total number of rewards received,

• j: attempts of a (s, a), j = {1..n}, where n is the total number of attempts of a

(s, a),

and the following additional terms,

• ri: value of the ith point reward,

• ti: arrival time of the ith point reward,

• τj: selection time of the jth attempt of a (s, a),

• γ: discount factor, γ ∈ (0, 1],

• α: learning rate, α ∈ [0, 1],

• t: current simulation time, t = {1..T }, where T is the maximum time in the simula-

tion,

• H(ti − τj): an indicator function that is equal to 0 if ti − τj < 0, 1 otherwise,

which we will use throughout this section. We define the expected utility of each jth

attempt of a (s, a) as the discounted sum of the point rewards, ri, received following visit

to the (s, a).

Uj(s, a) ≡
k∑
i=1

riγ
ti−τjH(ti − τj), (25)

70

where H(ti − τj) is an indicator function that ensures that only point rewards received

following the attempt of a (s, a) are credited to the jth attempt, equal to 0, if ti − τj < 0,

or 1, if ti − τj > 0. Each future point reward is discounted back to the time at which the

(s, a) was visited. So we see that as (ti− tj)→∞ that the contribution of additional point

rewards to this term goes to zero. Note that this does not depend on the number of k point

rewards, only the time difference. Next we estimate the long-term value of each (s, a) by

calculating the expected utility of each (s, a) using either a sample average,

Q(s, a) =
1

n

n∑
j=1

Uj(s, a), (26)

or an exponentially weighted average,

Q(s, a) =

∑n
j=1 α

t−τjUj(s, a)∑n
j=1 α

t−τj
=

∑n
j=1 α

−τjUj(s, a)∑n
j=1 α

−τj
, (27)

Both versions can be updated upon arrival of point rewards or in a continuous man-

ner. We will first discuss the recursive update toUj(s, a) upon the arrival of the k+1 point

reward. First define the utility of the jth attempt of a state-action pair, (s,a), as a function

of the k point rewards received, Uj(k) ≡ Uj(s, a). We can see that the expected utility

of each jth attempt of a state-action pair, Uj(s, a), only changes with the arrival of point

rewards, so in order to update our estimate of the value of each attempt we need to update

Uj(k+ 1),

Uj(k+ 1) = Uj(k) + rk+1γ
tk+1−τjH(tk+1 − τj). (28)

In order to update the overall estimate of the value of a state-action pair, Q(s, a),

we first define it as a function of the number of attempts of each state-action pair, n, and

the number of point rewards, k, received, Q(n, k) ≡ Q(s, a).

71

We can think of the update needing to occur in two cases. In the first case, we

have received no additional point rewards, but have increased our number of attempts of a

state-action pair, Q(n+ x, k),

Q(n+ x, k) =
n

n+ x
Q(n, k). (29)

In the second case, we have received additional point rewards and have made additional

attempts of a state-action pair, Q(n+ x, k+ 1),

Q(n+ x, k+ 1) =
n

n+ x
Q(n, k) +

1

n+ x

n+x∑
j=1

rk+1γ
tk+1−τjH(tk+1 − τj). (30)

Note that the first half of this term is identical to the update for Q(n + x, k) and that in

the second half of this term we simply update the value of all attempts, j = 1...n + x, of

a state-action pair with the k + 1 reward, making sure that we weight this incremental up-

date equally with the previous by multiplying by 1
n+x

. Since all previous attempts receive

credit for new rewards, we must update all j visits rather than just the n...n + x attempts.

This produces a straightforward and direct estimate that is equally weighted and takes into

account environment time in the update of the expected utility of each visit, but does not

adjust the weights on each visit based on environment time, see Algorithm 5. We make a

decision in the Algorithm 5 to conduct updates only on the receipt of point rewards, how-

ever, the algorithm could be easily adjusted to make updates following each attempt of a

state-action pair with no receipt of a point reward. The choice depends on the needs of the

application and computational considerations. We can make this estimate more sensitive to

changes in the environment by developing the second key idea further by incorporating an

exponentially weighted average.

72

Algorithm 5 Direct-Q Computation (DQ-C) with sample averaging
1: Parameters: discount rate, γ; base weight, α.

2: Indices: i, index of point rewards, i ∈ {1...k}; j, index of attempts of a state-action pair, j ∈ {1...n}

3: Terms: number of attempts of a state-action pair, n; number of attempts of a state-action pair since last update, x; number of

point rewards received, k; time of attempt of jth state-action pair, τj; value of the ith point reward, r.

4: Initialize π (ie. ε-greedy, Boltzmann).

5: Initialize for all state-action pairs as they are encountered: Q(s,a)=0, estimate of each state-action pair; n(s,a)=0, counter for

number of attempts of a state-action pair; x(s,a)=0, counter for number of attempts of a state-action pair since last update.

6: while agent is running do

7: t← current time

8: Return a using π(s).

9: τj← t

10: Append τj to list of most attempt times for (s,a).

11: x(s,a)← x(s,a) + 1

12: Observe for point reward, r.

13: if point reward r is observed then

14: for all state-action pairs observed, update Q(s,a) do

15: if n(s,a) not 0: then

16: x← x(s,a)

17: n← n(s,a)

18: Q(s,a)← n
n+xQ(s,a)

19: n← n+ x

20: n(s,a)← n

21: x(s,a)← 0

22: for j from 1 to n do

23: Q(s,a)←Q(s,a) + 1
nrγ

t−τj

24: end for

25: end if

26: end for

27: end if

28: end while

Considering the update of the exponentially weighted version we see that there is

no change to the update of the expected utility,Uj(k), of each jth visit to a state-action pair

from the previous update. In order to update the overall estimate of the value of a state-

action pair, we first define it as a function of the number of attempts of each state-action

pair, n, the number of point rewards, k, and the current time, t, Q(n, k, t) ≡ Q(s, a). We

choose to leave the current time in this version of the formulation since it allows us to avoid

potential numerical precision errors and we provide an alternative without it subsequently.

73

In this case, since the weights applied to each jth visit are dependent on the current time,

t, we must update the value of each set of weights upon each update, see Algorithm 6.

Here we conduct an update to the numerator for each state-action pair as a function of the

number of attempts of a state-action pair, the number of point rewards, and the current time,

N(n, k, t) ≡ N(s, a), and the denominator for each state-action pair as a function of the

number of attempts of each state-action pair and the current time, D(n, t) ≡ D(s, a). Let,

N(n, k, t) ≡
n∑
j=1

αt−τjUj(k),

D(n, t) ≡
n∑
j=1

αt−τj,

Q(n, k, t) ≡ N(n, k, t)

D(n, t)
. (31)

Rearranging terms, we isolate our time dependent parameter in both the numerator

and denominator,

N(n, k, t) = αt
n∑
j=1

1

ατj
Uj(k),

N(n, k, t) = αtS(n, k), (32)

where,

S(n, k) ≡
n∑
j=1

1

ατj
Uj(k), (33)

and,

74

D(n, t) = αt
n∑
j=1

1

ατj

D(n, t) = αtC(n), (34)

where,

C(n) ≡
n∑
j=1

1

ατj
. (35)

Now we can state the update for N(n, k, t) as,

N(n+ x, k+ 1, t) = αtS(n+ x, k+ 1),

S(n+ x, k+ 1) = S(n, k) +

n+x∑
j=1

1

ατj
rk+1γ

tk+1−τjH(tk+1 − τj), (36)

and the update for D(n, t) as,

D(n+ x, t) = αtC(n+ x),

C(n+ x) = C(n) +

n+x∑
j=n+1

1

ατj
. (37)

DQ-C uses all available data and by employing exponential weighting it allows the

use of DQ-C in an on-line manner. The exponential weighting also allows DQ-C to be

sensitive to changes in the environment, while avoiding the use of TD methods with their

inherent assumption regarding the Markov property, which seldom holds in application

environments. In Algorithm 6 we make use of the above formulation. See Appendix D for

a brief theoretical analysis.

75

Algorithm 6 Direct-Q Computation (DQ-C) with exponential weighting
1: Parameters: discount rate, γ; base weight, α.

2: Indices: i, index of point rewards, i ∈ {1...k}; j, index of attempts of a state-action pair, j ∈ {1...n(s,a)}

3: Terms: number of attempts of a state-action pair, n; number of point rewards received, k; arrival time of ith point reward, ti;

time of attempt of jth state-action pair, τj; value of the ith point reward, ri.

4: Initialize π (ie. ε-greedy, Boltzmann).

5: Initialize for all state-action pairs as they are encountered: Q(s,a)=0, estimate of each state-action pair; N(s,a)=0, numerator used

in estimate, and the current time; D(s,a)=0, the denominator of the estimate.

6: while agent is running do

7: t← current time

8: Return a using π(s).

9: τj← t

10: Append τj to list of attempt times for (s,a).

11: n(s,a)← n(s,a) + 1.

12: Observe for point reward, r.

13: if point reward is observed then

14: for all state-action pairs observed, update Q(s,a) do

15: if n(s,a) not 0: then

16: n← n(s,a)

17: for j from 1 to n do

18: N(s,a)←N(s,a) + 1

α
τj
rγt−τj

19: D(s,a)←D(s,a) + 1

α
τj

20: end for

21: Q(s,a)← N(s,a)
D(s,a)

22: end if

23: end for

24: end if

25: end while

In the next section we will discuss the results of empirical benchmarking with DQ-

C.

B. BENCHMARK PROBLEMS

We compare DQ-C to Q-learning, SARSA, SARSA(λ), and Q(λ) using ε-greedy

and Boltzmann policies on the n-arm bandit task as a benchmark for learning speed in a

simple single state environment. We next compare the performance of DQ-C to Q-learning,

SARSA, SARSA(λ), and Q(λ) in gridworlds ranging in size from 2x2 to 10x10 using

ε-greedy and Boltzmann policies across a range of input parameters and environmental

76

conditions in each case. In each case parameters were tuned for each algorithm to ensure

optimal performance and the results reported reflect the best performance of each in the

given task environment.

1. N-Arm Bandit

Bandit problems can be described as single state MDPs 〈s0, an ∈ A,R(s0, an)〉

(Robbins, 1952). The problem is to determine the optimal policy to maximize long-term

utility, π∗(s0). Performance in bandit problems can be measured using regret, the cost of

not choosing the best arm,

ρ = Tµ∗ −

T∑
t=1

µi∈n, (38)

accumulated over a finite-time horizon, T , where µ is the expected return of an arm and

µ∗ is the expected return of the best arm (Kocsis & Szepesvári, 2006). We treat this as a

continuous learning task for 250 trials, where each trial is an attempt or pull of an arm. At

the end of each trial the total accumulated regret measured and the mean and standard error

of the sample of 500 replications is reported. Per Sutton’s description of the 10-arm bandit

benchmark, we examine a case with zero noise on the reward, σ2 = 0, and a case with

gaussian noise, σ2 = 1.

In the 10-arm benchmark task with zero noise on the reward, σ2 = 0, SARSA

paired with Boltzmann, β, demonstrated the lowest total regret, see Figure 11, followed

closely by Q-learning, and DQ-C paired with ε-greedy, see Table 1. The results for the

10-arm case with noise on the reward, σ2 = 1, are similar with DQ-C, paired with β

leading folllowed by Q-learning and SARSA, both paired with ε-greedy, see Table 2. DQ-

C performs well in the most challenging of the bandit environments explored, the 10-arm

benchmark with noise, accumulating 23% less regret that Q-learning, its nearest competitor.

77

Figure 11: Top three performers for 10-arm bandit benchmark domain, for σ2 = 1.0 and

σ2 = 0.0, 250 trials and 500 replications. Mean total regret is plotted for each algorithm

policy pair along with associated standard error.

78

Table 1: Regret results for algorithms coupled with epsilon − greedy, β, for 10-arm

bandit benchmark task following 250 trials with 500 replications with σ2=0 on the reward

signal. SARSA with ε-greedy provided best result.

ALGORITHM ε β

Q-LEARNING 69.52±1.23 22.89±0.66

SARSA 71.17± 1.15 22.43±0.65

Q(λ) 44.4± 1.46 87.08±1.59

SARSA(λ) 55.23± 1.86 77.38± 2.22

DQ-C 25.21± 0.97 55.85±1.0

Table 2: Regret results for algorithms coupled with epsilon − greedy, β, for 10-arm

bandit benchmark task following 250 trials with 500 replications with σ2=1 on the reward

signal. DQ-C with β provided best results.

ALGORITHM ε β

Q-LEARNING 46.56±1.35 67.45±1.56

SARSA 46.77±1.35 63.94±1.22

Q(λ) 65.45±1.71 53.44±1.88

SARSA(λ) 60.8±1.7 53.07±1.8

DQ-C 47.01±1.34 35.99±1.27

2. Two-Arm Bandit

In order to further understand the performance of the algorithms in the most simple

cases we also used the same procedures to examine the 2-arm bandit case. In this set of

experiments we also explored the impact of the absolute difference between the mean of

the two arms. When no noise is present DQ-C produced the best performance when the

arms were well separated and was slightly outperformed in the case where the arms were

only 0.2 apart by Q-learning and SARSA, see Tables 3. Since Q-learning systematically

79

overestimates the best arm, this strategy pays off when the true values of the arms are close

(Thrun & Schwartz, 1993). In the case where there is noise on the arms Q(λ) produces

lower regret than DQ-C in the case where the means of the arms are well separated, but in

the most challenging case, low separation on the arms with noise, DQ-C produces the best

result, see Table 4.

Table 3: Regret results for algorithms coupled with epsilon − greedy and β for 2-arm

bandit following 250 trials with 500 replications with σ2 = 0, δ = µ∗ − µ1 = 0.8 and 0.2.

DQ-C with β provides best results in δ = 0.8 case, Q-learning and SARSA paired with

ε− greedy in the δ = 0.2 case.

ALGORITHM ε, δ = 0.8 β

aceQ−learning 14.59±0.44 30.83±0.64

SARSA 14.59±0.44 19.81±0.97

Q(λ) 65.45±1.71 4.96±0.26

SARSA(λ) 73.68±1.44 6.36±0.48

DQ-C 17.73±0.57 1.74±0.08

ALGORITHM ε, δ = 0.2 β

Q-LEARNING 3.64±0.11 21.66±0.20

SARSA 3.64±0.11 21.53±0.21

Q(λ) 18.87±0.40 5.74±0.27

SARSA(λ) 13.97±0.12 15.15±0.620

DQ-C 4.52±0.14 5.25±0.26

80

Table 4: Regret results for algorithms coupled with epsilon − greedy and β for 2-arm

bandit following 250 trials with 500 replications with σ2 = 1, δ = µ∗ − µ1 = 0.8 and 0.2.

Q(λ) paired with β resulted in the best performance for δ = 0.8 and DQ-C paired with β

for δ = 0.2.

ALGORITHM ε, δ = 0.8 β

Q-LEARNING 14.49±0.52 20.95±0.24

SARSA 14.53±0.52 19.1±0.32

Q(λ) 19.05±0.58 9.28±0.41

SARSA(λ) 18.48±0.75 14.79±0.80

DQ-C 14.28±0.52 12.33±0.65

ALGORITHM ε, δ = 0.2 β

Q-LEARNING 14.81±0.41 31.96±0.75

SARSA 14.79±0.40 19.53±0.85

Q(λ) 35.47±1.38 15.13±1.18

SARSA(λ) 21.71±1.13 11.57±0.89

DQ-C 14.68±0.42 4.62±0.37

3. Gridworld

Gridworld provides a sequential MDP, a stochastic shortest path problem that can

be described by the tuple 〈s ∈ S, an ∈ A, Pas,s ′, R(s0, an)〉, see Figure 12.

81

Figure 12: Sample gridworld domain.

We initially explore performance in deterministic and stochastic gridworlds varying

in size from 2x2 to 10x10. In the stochastic version of this task, we use a simple model-

based on the grid world from Russell and Norvig, but maintain only a single positive reward

upon attainment of the goal state (Russell & Norvig, 2010). The transition matrix for each

state is Ps,s
′

a = 0.8 and Ps,sa = 0.2.We measure performance by the mean number of times

the goal state was attained over 1000 replications of each condition. In each case the trial

period was limited to 500 time steps, meaning the agent sought to maximize the number

of times the goal was attained during that period. In both the deterministic case and the

stochastic case, DQ-C paired with either ε-greedy or Boltzmann provided a greater overall

utility, over two times the nearest competitor, than the comparison cases for the same time

periods indicating that DQ-C learned faster in this benchmark domain, see Figures 13 and

14 as well as Tables 5 and 6.

82

Figure 13: Top three performers for deterministic and stochastic 5x5 gridworld task, 500

trials and 1000 replications. Mean total utility for each is plotted for each algorithm policy

pair along with associated standard error.

83

Figure 14: Top three performers for deterministic and stochastic 10x10 gridworld task, 500

trials and 1000 replications. Mean total utility for each is plotted for each algorithm policy

pair along with associated standard error.

84

Table 5: Mean goals achieved for deterministic (top) and stochastic (bottom) 5x5 grid world

following 500 trials with 1000 replications with single reward upon attainment of the goal

state by algorithm and policy. DQ-C with ε-greedy obtained the best result in each case.

ALGORITHM ε β

Q-LEARNING 3.84± 0.12 3.04± 0.08

SARSA 3.734± 0.12 2.93±0.07

Q(λ) 2.23± 0.05 2.17± 0.55

SARSA(λ) 7.34± 0.22 5.97± 0.16

DQ-C 15.25± 0.33 14.45±0.33

Q-LEARNING 2.508± 0.08 2.24± 0.06

SARSA 2.49± 0.08 2.24±0.06

Q(λ) 1.74± 0.05 1.77± 0.05

SARSA(λ) 4.53± 0.14 4.28±0.14

DQ-C 10.30± 0.28 9.34±0.27

85

Table 6: Mean goals achieved for deterministic (top) and stochastic (bottom) 10x10 grid

world following 500 trials with 500 replications with single reward upon attainment of the

goal state by algorithm and policy. DQ-C with ε-greedy obtained the best result in each

case.

ALGORITHM ε β

Q-LEARNING 0.504±0.03 0.586±0.02

SARSA 0.504± 0.02 0.576±0.02

Q(λ) 0.484± 0.02 0.544± 0.02

SARSA(λ) 1.67± 0.12 0.668±0.03

DQ-C 3.03± 0.21 1.12±0.07

Q-LEARNING 0.47± 0.02 0.39± 0.02

SARSA 0.47± 0.02 0.394±0.02

Q(λ) 0.45± 0.02 0.384± 0.02

SARSA(λ) 1.07± 0.07 0.432±0.02

DQ-C 2.39± 0.16 0.524±0.03

In order to gain further insight into the performance of DQ-C under more challeng-

ing conditions we repeated the procedures described above on a non-stationary stochastic

version of gridworld, where the likelihood of transitioning from a state oscillated according

to a sinusoidal function and a version of grid world with a dynamic goal. In both cases DQ-

C outperformed alternative methods, with DQ-C paired with both exploration techniques

finishing in the top two slots in each case followed by SARSA(λ), see Figure 15.

86

Figure 15: Top three performers for 5x5 gridworld, with oscillating transition matrix and

a dynamic goal, 250 trials and 500 replications. Mean utility is plotted for each algorithm

policy pair along with associated standard error.

The results from the dynamic gridworld illustrate the success of the algorithm in

performing well in non-stationary environments.

4. Summary

Our estimator results in faster learning on the most challenging empirical cases that

we have explored, those with noisy and delayed rewards, with noticeable improvements

relative to dominant algorithms under two of the more challenging conditions. Future work

87

will compare the performance of DQ-C to model-based methods, conduct further anal-

ysis of its theoretical properties, and document its application in applied domains. See

Appendix I for additional benchmarking results.

In the next sections, we will examine how the results we observed in these bench-

mark domains transition over to more challenging applied problems in game domains. The

first section details the use of RL in a game-based domain, the Physical Traveling Salesman

Problem. The second section provides results of the incorporation of an RL controller into

the classic arcade game, Pacman.

C. PHYSICAL TRAVELING SALESMAN PROBLEM

The traveling salesman problem (TSP) is one of the most widely studied optimiza-

tion problems with many approaches involving heuristics and meta-heuristics for finding

approximately optimal solutions for for problems of very large scale involving many thou-

sands of cities. The objective of a standard TSP is to minimize the total distance travelled.

The physical traveling salesman problem (PTSP) makes a modification to the base prob-

lem that makes the solution to even relatively small problems much more complex. In this

modified version the salesman has mass and moves by applying a force vector to the mass

at each point in time and controlling the orientation of the mass through direction controls.

The objective is to find the shortest path through the cities, measured by the total time

required to complete the circuit, while minimizing the number of force vectors applied.

The environment is a two-dimensional board with ten waypoints and multiple obstacles,

see Figure 16. This problem is currently part of an open competition involving two IEEE

sponsored conferences: the 2012 IEEE World Congress on Computational Intelligence and

the 2012 IEEE Conference on Computational Intelligence and Games (http://www.ptsp-

game.net).

88

Figure 16: Sample map for physical traveling salesman problem.

1. Problem Specification

The PTSP requires that an object with mass, referred to as a ship, moving in a

two dimensional environment with physics based laws of motion travel through a set of

89

waypoints while minimizing time with a lesser weight on the minimization of thrust. The

controller must be initialized within 1000ms and at each iteration must respond with a

control input within 40ms. We can describe the environment by defining the following

indices,

• t, time, t = {1...T }, where T is the maximum time allowed to reach a waypoint,

constant at T=1000 steps

• i, waypoint, i = {1..|W|}, whereW is the set of waypoints that the ship must visit,

• j, action index, j = {0, 1, 2, 3, 4, 5},

and the following additional terms,

• pt, the ship’s position vector in two dimensional space at time t,

• ot, the ship’s orientation at time t,

• vt, the ship’s velocity at time t,

• α, the rotation step-size applied to the ships orientation upon a control action, con-

stant at α = π
60

radians,

• L, the friction factor applied to the ships velocity at each t, constant at L = 0.99,

• K, the collision factor modifying the direction of the ship upon collision with an

object, constant at K = 0.25

• Tinitialize, the maximum time allowed for a controller to initialize, constant at

Tinitialize = 1000ms

• Tresponse, the maximum time allowed for a controller to respond at each t, constant

at Tresponse = 40ms,

90

which are used in the following update equations,

pt+1 = pt + vt+1,

ot+1 =
(

cos(α) − sin(α)
sin(α) cos(α)

)
, (39)

vt+1 = (vt + (ot+1TtK))L.

The set of actions, a ∈ A, controls steering and the application of thrust to the

ship and all actions act as forces applied to the ship to update its state using the update

equations. Since our focus is RL we decompose the PTSP into a path planning problem,

where the goal is to select the next waypoint in an efficient manner, and a ship control

problem, where the goal is to learn how to use the six actions available to navigate the ship

to its destination.

In order to determine which waypoint to navigate to next, we determine the closest

waypoint from our current location that has not yet been visited, see Algorithm 7. If we

have line of sight to the waypoint then the RL controller must control the ship to reach the

waypoint, but if there is not line of sight to the next waypoint we locate the nearest location

that does have line of sight to the waypoint and create an intermediate objective. In this

case the RL controller first attempts to control the ship to reach the intermediate objective

then re-assigns the destination to the target waypoint. Should the ship grossly overshoot its

target, completely possible in this domain, it will identify the closest waypoint and reassign

the waypoint objective. This is a purely greedy strategy, but serves its purpose in terms of

providing a simple mechanism to select the next waypoint to facilitate the learning of the

control task.

91

Algorithm 7 Greedy city selection
1: Create city list.

2: Set closest unvisited city as next waypoint.

3: if no line of site then

4: Set intermediate waypoint.

5: end if

6: Select control actions with RL controller.

7: Increment t. Go to line 2.

2. RL Formulation

We focus the RL formulation on the control subproblem of the PTSP. We define

the RL control problem by the following tuple, 〈−→s ∈ S, a ∈ A, Ps,s ′a , R(s)〉. The state

description vector,st,
−→st = 〈Ot, Vt, Dt〉, describes the state of the ship at time t, where

Ot(ot) ≡ orientation of ship relevant to goal, Vt(vt) ≡ speed, Dt(dt) ≡ distance from

goal, and the state space is developed as described below.

Ot(ot) =

4 ot < −0.5

3 −0.5 < ot 6 0

2 0 < ot 6 0.75

1 0.75 < ot 6 0.97

0 0.97 < ot

Vt(vt) =

0 0 < vt 6 0.4

1 0.4 < vt

Dt(dt) =

0 0 < dt 6 15

1 15 < dt

The reward function is defined,

92

R(Ot, Vt, Dt) =

Ot
1

dt−1+1
1 > Ot&dt−1 − dt > 0.4

0 o.w,

and provides a graduated reward structure, but with a large bonus obtained only upon reach-

ing the waypoint.

The challenge of developing the appropriate state space for a given problem is a

significant research topic in its own right.

3. Empirical Results

In order to gain insight into the performance of the algorithm policy pairs on the

control task we conducted computational experiments comparing the performance of DQ-

C, SARSA, Q-Learning, SARSA(λ), and Q(λ) when paired with ε-greedy and β. We

evaluated performance across a range of parameters for each algorithm and show results

for the best performance observed for each algorithm. Each combination is replicated 1000

times, with each replication using a different initial random seed as a variance reduction

measure. Additionally, performance is measured across ten maps of varying complexity,

see Appendix E.

DQ-C matches or outperforms the comparison cases across all map sets. DQ-C

paired with Boltzmann, β, had the highest number average number of waypoints found and

the lowest time per waypoint, see Figure 17 and Figure 18. Q(λ) paired with Boltzmann

followed DQ-C, and in the case of at least one map outperformed DQ-C. The RL task

is formulated as a sequential task where the agent tries to learn how to control the ship

to reach the next waypoint. As a result of this even during a single trip to a single city,

there is an episodic nature to the task. Since the state is always described in terms of

the ship’s location relative to the next waypoint, the state-space is reduced significantly.

DQ-C requires both γ and α to be specified and is designed to address the temporal credit

assignment problem. Interestingly the other top performers in this game environment, Q(λ)

93

and SARSA(λ), both include the notion of eligibility traces, also intended to address the

credit assignment problem (Sutton & Barto, 1998).

Figure 17: Mean waypoints obtained across all maps by top three performing algorithm

and policy pairs.

94

Figure 18: Mean time per waypoints obtained across all maps by top three performing

algorithm and policy pairs.

4. Insights from the Physical Traveling Salesman Problem

As we saw in grid world and the 10-arm bandit, DQ-C continues to match or out-

perform the comparison cases across all map sets. DQ-C paired with Boltzmann had the

highest number average number of waypoints found and the lowest time per waypoint.

Q(λ) paired with Boltzmann followed DQ-C. The reward structure here was graduated to

facilitate faster learning given the large state space, with the large reward attained upon

reach each waypoint serving as a large delayed reward compared to the magnitude of the

95

interim rewards. This is an example of an environment that makes use of continuous-time

rather than a turn based counter.

D. PACMAN

The Pacman arcade game places a player controlled agent, Pacman, in a variety of

mazes with the goal of avoiding ghosts, two in this version, while consuming all dots on the

board. The player has access to two power dots, which when eaten allow the ghosts to be

temporarily consumed by Pacman. We build on the infrastructure provided by the Berkley

Pacman projects with our empirical work focused on the medium sized classic map, see

Figure 19, (http://www.inst.eecs.berkeley.edu/cs188/pacman/pacman.html).

Figure 19: Medium sized classic Pacman map.

96

1. Problem Specification

Pacman requires the controller to select actions to avoid the ghosts while consuming

dots. We can describe the environment by defining the following indices,

• t, turn or time, t = {1...T }, where T is the maximum time allowed to reach a

waypoint, constant at T=1000 steps

• i, dots, i = {1..n}, where n is the number of dots that must be consumed,

• j, action index, j = {0, 1, 2, 3},

• k, ghosts, k = {0, 1},

and the following additional terms,

• pt, the Pacman’s position vector in two dimensional space at time t,

• gk,t, the kth ghost’s position vector in two dimensional space at time t,

• ot, the Pacman’s orientation at time t,

• ci,t, an indicator describing the state of the ith dot at time t

• ft, the number of dots remaining at time t.

2. RL Formulation

We define the RL control problem by the following tuple, 〈−→s ∈ S, a ∈ A, Ps,s ′a , R(s)〉.

The state description vector,st,
−→st = 〈Fd,t, Dt〉, describes the state of the pacman at time

t, where F(pt, ci,t)d,t ≡ the presence of food in the adjacent locations, d ∈ (E,W,N, S)

and D(pt, gk,t)t ≡ the minimum distance to the nearest ghost.

F(pt, ci,t)d,t =

0 if food not present

1 if food present

97

D(pt, gk,t)t =

0 dist(pt, gk,t) < 6.0

1 6.0 < dist(pt, gk,t) 6 15.0

2 15.0 6 dist(pt, gk,t)

The reward function is defined,

R(st) = ft−1 − ft (40)

providing a graduated reward structure based on the number of dots consumed since our

goal in this case is to clear the board of food, with a large negative penalty, -500 when

awarded when the Pacman is killed.

This formulation resulted in extremely slow learning and in order to speed learning

and improve performance we opted to include additional domain knowledge in the form

of top-level strategies based on the same state. This approach is similar to one taken pre-

viously in attempts to incorporate RL into the Pacman environment and emphasizes an

important point regarding learning speed. In most applied cases, the controller needs to

learn policies in certain key decision points. This is worth noting as the same problem is

encountered in the representation of human decision makers. The three strategies were to

flee, to findFood, or to pursue a greedy, see Algorithms 8, 9, and 10. These strategies

became the action space for the learner and the task became to map states to strategies.

Algorithm 8 Flee
1: Identify direction that increases the distance from the nearest threat.

2: Select direction.

3: Select strategy with RL controller.

Algorithm 9 Greedy
1: Identify adjacent direction that contains food.

2: Select direction.

3: Select strategy with RL controller.

98

Algorithm 10 findFood
1: Identify direction that reduces the distance to the closest food cell.

2: Select direction.

3: Select strategy with RL controller.

3. Empirical Results

In order to gain insight into the performance of the algorithm policy pairs on the

control task we conducted computational experiments comparing the performance of DQ-

C, SARSA, Q-Learning, SARSA(λ), and Q(λ) when paired with ε-greedy and Boltzmann.

We evaluated performance across a range of parameters for each algorithm and show re-

sults for the best performance observed for each algorithm. Each combination is allowed

to train for 1000 games, with a consistent random seed used across all combinations as a

variance reduction measure. The mean percentage of the board cleared across all games

was used as a measure of performance. SARSA(λ) paired with either ε-greedy or Boltz-

mann significantly outperformed competing algorithm policy pairs and with the excep-

tion of SARSA(λ), Boltzmann paired algorithms consistently outperformed their ε-greedy

counterparts, see Figure 20.

99

Figure 20: Mean percent of board cleared by all algorithm and policy pairs for best per-

forming parameter settings.

4. Insights from PACMAN

In this section we examined the application of RL to a more complex domain with

a challenging task, the control of the Pacman in the arcade game of the same name. This

is a challenging adversarial environment with a potentially very large state space. We ob-

served cases in this domain where DQ-C did not strictly outperform its competitors and a

case where SARSA(λ) performed well. In all cases, learning was improved through the

incorporation of domain knowledge through the use of strategy combinations. Here we are

not asking the controller to learn atomic-level information, only the mapping between the

100

state of the controller and the discrete strategy choices. Note that the reward structure in

this case still possessed the large delayed associated with the attainment of the waypoint in

the previous section, but because of the difficulty in achieving the reward, which required

complete clearance of the board, the controller in most cases never achieved it. The adver-

sarial nature of the environment also served to shorten learning periods requiring multiple

restarts. This aspect of the environment is similar in nature to challenges that would be

present in the use of RL in a combat model, where attrition due to combat would create

new states that would require additional learning-time.

E. INSIGHTS ON DQ-C

DQ-C showed a significantly better performance on standard benchmark problems

and game-based domains than dominant algorithms in that rely on noisy hill-climbing pro-

cesses. We make use of all available information by using the long-term historical reward

to determine the value of the state-action pair at the time it was chosen and then ensure that

we are weighting the most recent attempts of a state-action pair more heavily than early

attempts through the use of an exponentially weighted average tied to continuous system

time rather than simple counters. The use of discounted sums to develop an estimate of

the long-term value of each attempt of a state-action pair linked to continuous environment

time is novel as is the use of an exponentially weighted average tied to environment time.

Weights are constantly adjusted with each attempt of a state action pair. We avoid temporal

differencing and reduce the number of tunable parameters required to incorporate the no-

tion of a recency bias from 3 to 2. In the next chapter we discuss the application of DQ-C

to three applied DoD simulation use-cases.

101

THIS PAGE INTENTIONALLY LEFT BLANK

102

IV. APPLICATIONS

This chapter details the incorporation of RL in a variety of applications, with a

focus on comparison of Direct-Q Computation with similar algorithms. In the subsequent

sections we provide example application of the algorithm in a two game-based domains

and three DoD simulation models each, each related to a different practical use case. In the

First section, RL is used to address two cases not currently covered by the Assignment and

Scheduling Capability for Unmanned Aerial Vehicles (ASC-U) tool. The Second section

shows a proof of principle integration of RL into COMBATXXI as a mechanism to control

entity level decision making. The final section provides the results of the application of RL

to verify the reward structure of a training simulation, UrbanSim.

A. UNMANNED AERIAL VEHICLE ASSIGNMENT AND SCHEDULING PROB-
LEM

Dynamic programming provides an appealing alternative to solve many applied

military planning problems, such as the unmanned vehicle assignment and scheduling

problem, that do not lend themselves to pure mathematical programming techniques. This

problem includes dynamic UAV assignment constrained by the location of launch and re-

covery sites (LRS), and mobile ground control stations (GCS) with finite control capacity

from which UAVs must be controlled throughout flight operations. Value in this problem

is maximized by the assignment of UAV packages to mission areas with mission require-

ments that match package types. The Assignment Scheduling Capability for Unmanned

Aerial Vehicles (ASC-U) simulation model provides an approximate solution to this prob-

lem using concepts from discrete event simulation and optimization to implement an a

dynamic programming solution for tactical-level scenarios (Ahner et al., 2006; A. Buss,

2009).

103

1. Assignment Scheduling Capability for UAVs

ASC-U uses a discrete event simulation model coupled with the optimization of a

linear object function to develop a feasible schedule for UAV mission assignments to mis-

sion areas. Value is obtained from the correct pairing of mission areas with UAV package

types. UAV packages possess capabilities required to obtain value from a given mission

area assignment based on the demands associated with that mission area. ASC-U provides

a feasible solution at set intervals to a finite horizon assignment problem given complete

information concerning the mission demands and associated values within the finite-time

horizon. The simulation calculates an overall mission value for each assignment by con-

sidering the required flight time to each mission area and the amount of time each UAV

covers the area. Note that all mission areas and their associated values are fully observable

by the scheduler at the planning point for the entire time period being scheduled (Ahner

et al., 2006). The scheduler provides each UAV only the initial mission area assignment,

ensuring that only one UAV is assigned per mission area, and relies on a greedy heuristic

to allow each UAV platform to select a subsequent mission should the mission area they

are currently covering close. The need exists to improve the ability of the scheduler agent

to develop near optimal plans schedules in cases with delayed and noisy rewards.

2. Problem Specification

The full dynamic programming formulation, see Appendix F, presented challenges

due to the large state and control space, so in order to overcome these issues the problem

was reformulated to a linear optimization problem that is solved at set time intervals during

the course of a discrete event simulation, see Appendix F.

3. RL Formulation and Empirical Results

In this section, we describe two approaches to the application of RL to address the

UAV assignment and scheduling problem. The formulations differ in manner in which the

decision problem is formulated and in the appellation of RL to the problem. We will refer

to the existing ASC-U framework as the base case.

104

a. Case 1 Formulation

In the first case, we simply replace the greedy heuristic to reassign UAV’s

following their initial allocation with an RL formulation. As each platform completes its

current mission it is presented with a set of open feasible mission areas to choose from and

in the absence of options will return to its LRS. In the base case, the platform is provided

complete and accurate information regarding the value of each alternative and it chooses

the mission with the maximum value at time 0 following the execution of the base case

linear program. This approach also does not account for delayed emergent rewards and

will miss the opportunity to pursue a higher valued mission area that is observable at the

beginning of the planning horizon, but is open at some point in the future.

In order to provide an alternative to the base case heuristic we can formu-

late the problem as a bandit problem from the perspective of each platform as it becomes

available. The arms in this problem are the set of open feasible mission areas and the op-

tion to return to base or loiter. The state is defined by the platform and reward is obtained

following completion of the mission.

b. Case 1 Empirical Results

In order to evaluate this case we set up a small benchmark scenario that

produces the situation where we expect that the base case will miss the opportunity to

achieve a delayed reward, see Figure 21. In order to illustrate this case, we provide a

simple scenario with a single LRS, single GCS and single UAV assigned. Two mission

areas are observable in the initial planning horizon. The first mission area is available from

time 0 to time 3 and provides a value of 10 per time unit covered. The second mission

area opens at time 3 and remains open through time 7 providing a value of 10 per time

unit covered. The base case will schedule the coverage of the first mission using the linear

program, once the emergent mission area becomes available it will switch over to cover

the emergent target with its remaining capacity. The base case will consistently miss out

on additional value from the emergent target, no matter how many times that situation is

encountered, since it follows a purely greedy policy with no real notion of state.

105

Figure 21: Case 1 mission area timing.

In the RL formulation we provide the alternative to simply preserve capac-

ity in order to take advantage of a future high value mission area and the learning prob-

lem becomes one of identifying the appropriate time to preserve capacity versus behaving

greedily, our familiar exploration and exploitation problem. This results in an improvement

over the base case regardless of RL algorithm chosen, see Figure 22. In the course of a

scenario this uncovered case serves to insert error into the schedule and since the scenario

developer has no means of knowing how often this occurs during the course of a scenario

106

Figure 22: Case 1 results.

run, the potential for lost value, or regret, to accumulate over the course of a large scenario

is great.

RL provides a mechanism to address this, but does require the use of mul-

tiple replications to arrive at a feasible solution, while the base case requires only a single

run.

c. Case 2 Formulation

In the second case, we replace the linear program that provides the initial

assignment with an RL formulation. The RL formulation is provided the same information

107

used by the base case at each planning interval. The set of available platforms are assigned

to open mission areas. The base case assigns a only a single mission to each platform and

does not see past the specified time horizon. We can expect that this approach will fail to

achieve maximum value for those cases where all platforms are assigned to long durations

mission areas at time t and new mission areas of higher value open at the next scheduled

window.

In order to provide an alternative to the base case we provide the RL for-

mulation with the same information provided to the base case and constrain it to decision

making on the same interval, treating the assignment of each mission package to a mission

area as an n-arm bandit problem, where the arms are defined by the mission areas and the

option to “do nothing”. State is defined by the mission package name, with the option of

using the assignment time since the mission areas are defined by open and close times. In

this case we will simply maintain the definition of state by the mission package name.

d. Case 2 Empirical Results

We first establish a scenario which reproduces the conditions where we

would expect the base base to fail and confirm that the base case fails to obtain the maxi-

mum value under these conditions. In order to demonstrate this we establish a single LRS,

with a single GCS and UAV assigned. The scenario consists of two mission areas, one open

from time 0-9 which provides a value of 10 per time covered and a second open from time

11-15 with a value of 1000 per time covered, see Figure 23 and Table 7. The time horizon

is set at 10, meaning that the base case will have full knowledge of mission demands out to

time 10, and will optimize the mission package and mission area pairing at time 0 and time

10. The platform only has the ability to stay on station for 9 time units.

108

Figure 23: Case 2 mission area timing.

109

Table 7: Scenario configuration parameters for ASC-U Case 2.

PARAMETER VALUE

OPTIMIZATION INTERVAL 10

SCENARIO LENGTH 20000

TOTAL MISSIONS 2000

PLATFORM TRANSITION TIME 1.5

OPERATIONAL ENDURANCE 9

TIME HORIZON 9

The base case consistently fails to cover the delayed reward available from

the second open mission area since it develops an optimal schedule for the fully observable

finite-time horizon problem with no regard to potential higher value mission areas just

past that horizon. In this case, all resources are expended during the first planning period,

leaving no free platforms to cover the second mission area. This case in particular occurred

frequently enough in practice with larger scenarios to be noted by the developers.

The RL formulation is provided the same scenario and the same information

regarding the state of the world as the base case, but is also provided the option to “do

nothing” for each platform. The reward in this case is delayed since due to the scenario the

value of the subsequent mission area is not available at the time of the subsequent decision

period. The RL formulation is able to quickly identify the value of the delayed reward in

this simple case. The base case and RL aggregate value scores using DQ-C and ε-greedy,

see Figure 24, illustrate that the incorporation of RL can overcome the issues encountered

by the base cases reliance on a fully observable environment. This emphasize the difference

between a deterministic policy, such as a greedy algorithm or optimization, and a stochastic

policy, such as those typically used in conjunction with RL.

We compare DQ-C’s performance on this task with SARSA(λ), and Q(λ)

when paired with ε-greedy, see Figure 24.

110

Figure 24: Case 2 comparison mean value per iteration for each algorithm.

4. Insights on the Use of Reinforcement Learning in a Scheduling Tool

The main insight in the application of RL within a scheduling tool is that RL does

not require a fully observable environment as is the case in most optimization-based sched-

ulers, such as ASC-U. Since RL does not make use of a deterministic policy, such as a

greedy approach, RL is less likely make a consistent sub-optimal decision as we saw in the

base case analysis of case 2. However, it does mean that RL will require more computa-

tional time and more iterations over the problem than the deterministic case. Depending

on the use case and size of the problem the use of RL might not be practical, but it does

111

provide an approach to avoid those situations where a deterministic scheduler will consis-

tently fail to achieve an optimal schedule. In the case of ASC-U, the case in question had

been raised to the developers and was a known problem, but not one that a scenario devel-

oper could easily check for or avoid. This research contributes an approach to overcome

this deficiency. As ASC-U moves toward scenarios with noisy rewards and only partially

observable environments, the use of methods such as RL, which are designed to address

these issues will be essential. Some key insights:

• RL methods are able to provide a solution that out performs the base case linear

program in those cases where the optimal policy involves preserving capacity for

delayed rewards not fully observable at the time of planning.

• DQ-C demonstrates the ability to quickly learn in cases with delayed rewards, but

in cases where feedback is more immediate and where there is limited noise on the

reward signal, other techniques perform as well as DQ-C.

• In this setting the use of a greedy-in-the limit approach to exploration and exploita-

tion is appropriate, with the final state-action values serving as the scheduling pol-

icy.

In the next section, we will explore the application of RL algorithms to represent

human decision making in COMBATXXI.

B. ADAPTIVE BEHAVIOR IN COMBATXXI

COMBATXXI is an entity level high resolution, closed-form, discrete event sim-

ulation used for analysis of future capabilities at the brigade level and below by the U.S.

Army and the U.S.M.C. analytic organizations, TRADOC Analysis Center and the Opera-

tions Analysis Division respectively. COMBATXXI represents ground combat of light and

heavy forces, air mobile forces, future forces, aerial assets, amphibious and urban oper-

ations. COMBATXXI additionally represents the communications network and the flow

112

of information on the battlefield. COMBATXXI has seen extensive use in the support of

analysis of alternatives (AoA) for both the USA and USMC (Kunde, 2005).

Agents in analytic combat simulations, such as COMBATXXI, have relatively brit-

tle decision making capability making, as illustrated in Figure 25, the development of

scenarios time-consuming and making it challenging to conduct analysis of topics related

to the value of information. The typical modeling and simulation agent requires an apriori

mapping from states to actions, as represented by the arrows in Figure 25. This requires the

anticipation of each possible state and an explicit decision, regardless of the environment

dynamics, of the action the agent is to take in each case.

Figure 25: Typical modeling and simulation agent.

The incorporation of autonomous agents that make use of reinforcement learning,

see Figure 26, present one potential technique to overcome this brittleness problem while

potentially reducing scenario development time and improving the analysis of capabilities

intended to impact the situational awareness of decision-makers. In the case of the rein-

forcement learning agent, rather than script a set of rules in advance, the agent develops an

estimate of the value of its actions set in each state encountered. No hard coding of rules

is required. This approach relies on the dynamics of the environment in which the agent

is operating to provide feedback on performance to update its estimate, and in that manner

113

can also potentially inform the verification of simulation models. If following some learn-

ing period, the agent’s ranking of the potential actions available from a given state does not

match what a subject matter expert or modeler believes should be the case based on their

full knowledge of the environment, then potential issues with the environment might be

uncovered that would otherwise go unnoticed.

In this section, we demonstrate the use of reinforcement learning to control the

actions of agents within a two cases in COMBATXXI, both oriented toward route planning.

Figure 26: Modeling and simulation agent based on reinforcement learning.

1. Case 1 Formulation

In the first case, we examine a route selection problem in which the agent does not

know the length of the route in advance. The state of the agent is defined by its waypoint

location. The agent is provided a time based reward upon arrival at the final waypoint.

Adaptive route selection is a common problem in combat simulations. In the real-world a

unit will learn over-time which patrol route can be traversed in the shortest amount of time

and with the least amount of threat. In this very simple case, the learning task to to learn

which of two routes provides the shortest travel time to a destination see Figure 27.

114

Figure 27: Route selection scenario COMBATXXI.

2. Case 1 Empirical Results

We see in this case that over a fairly short period of time, the agent learns to select

the shorter of the two routes. DQ-C and SARSA(λ) both minimize regret and score well in

total utility, see Figure 28. This case is a delayed reward case and it is interesting to note

that Q(λ) does not perform well in comparison to DQ-C and SARSA(λ).

115

Figure 28: Route selection scenario COMBATXXI.

3. Case 2 Formulation

In the second case, we incorporate RL within a hierarchical task network designed

to select a formation type based on information from the terrain, see Figure 29. At each

waypoint, the agent makes a decision regarding the appropriate movement formation to

use to move to the next waypoint. Reward is provided upon the arrival at the next way-

point based on the choice of movement formation. The task is to learn to use a bounding

overwatch if there are more than two buildings between the start and end points of the

movement leg. Decision-making often is informed by domain knowledge. In this case, we

leverage hierarchical task networks to enable the agent to focus learning on only the rele-

116

vant decisions. The RL controller is incorporated into a decision node within the “move in

formation” HTN. When presented with a decision situation, agent makes a decision based

on the state of the world as defined by the number of buildings between it and the next

waypoint. This is a simple case, but both the decision and the feedback could be made

more complex in future cases.

Figure 29: Formation selection scenario COMBATXXI.

117

4. Case 2 Empirical Results

In this use case, we structure the reward to reinforce the desired TTP for a given

situation. The state is defined by the number of buildings on the next leg of the circuit

and the decision-making agents task is to learn the correct movement formation for a given

number of buildings. A reward is provided for choosing the correct movement formation

when the number of buildings is greater than 5 and a penalty of -1 is applied for choosing

the incorrect movement formation when the number of building is less than 5. We compare

the learning-time under this formulation for DQ-C, SARSA(λ), and Q(λ) in Figure 30.

The results are consistent with previous cases, with DQ-C showing less regret per turn and

a higher overall utility than the comparison cases. Note that this case does not involve a

delayed reward and we see Q(λ) and SARSA(λ) switch places in the ranking.

118

Figure 30: Formation selection scenario COMBATXXI.

5. Insights on the Use of Reinforcement Learning in Combat Simulations

The application of reinforcement learning within combat simulations in order to

represent human decision making presents unique challenges, particularly in the analysis

domain. Strict verification and validation guidelines require that algorithmic implementa-

tions be built on a valid conceptual model. In this case, RL is uniquely suited in that regard,

having been developed in the literature on the study of animal behavior and continued and

built upon in the literature on operant conditioning, and in fact still being contributed today

by the field of neuroscience. RL provides a simple framework upon which to build com-

plex adaptive behaviors. A key insight into the application of RL in the human behavior

119

representation use case is that an RL agent, much like a human, will progress through a

learning period much faster with quality practice focused on the relevant decision points

defined by the context. In this regard, the agent’s perception of its state, or situation, in-

forms it when it is appropriate to learn and when it is appropriate to exercise a deterministic

policy known in advance. The use of RL in combat simulations lends itself to judicious use

in specific decision situations. In order for learning to occur during a run the situation must

be encountered multiple times, which implies that for practical purposes agent’s should

be put through training scenarios with similar situations and the state-action values stored

for initialization in record runs of the combat model. A natural effect that could be gained

from this type of approach is a mechanism to represent the effects of various level of soldier

training and experience on performance.

The use of RL in conjunction with domain knowledge is also critical for the combat

simulation model use case. This domain knowledge assists in the recognition of the situ-

ation and the need for a decision. The hierarchical task networks explored here provide a

natural construct to facilitate this type of behavior in COMBATXXI.

C. VERIFYING THE REWARD STRUCTURE IN TRAINING SIMULATION

This section will apply reinforcement learning to the problem of verifying that the

reward structure in game-based training simulations supports stated learning objectives.

Specifically, we will apply RL to UrbanSim, a game designed to teach the doctrinal strategy

to tactical-level leaders operating in a counterinsurgency setting (Wansbury et al., 2010).

Trainees make a decision at each game turn based on their perception of the state of the

environment, see Figure 31 and receive a numeric reward signal following the completion

of each turn displayed in the lower right portion of the interface. In order to verify that the

training system rewards the trainee for adhering to doctrinal actions we will employ an RL

learner. The game developers identified that the verification of all potential paths through

the training system required the use of automated mechanisms (Wang et al., 2012).

120

Figure 31: UrbanSim player interface.

1. Problem Specification

UrbanSim requires the player to select actions maximize a numeric reward over a

finite-time horizon. The player chooses from a raw list of actions for each agent for each

turn, with an action space as large as 341 for some agents on each turn. The order in

which actions are chosen matters within the context of the game. Initially, we provide a

description of the problem that incorporates the use of domain knowledge. We gradually

increase the difficulty of the formulation until it mirror the unconstrained problem faced by

the human player. We can describe the environment by defining the following indices,

121

• t, turn, t = {1...T }, where T is the maximum number of game turns allowed, con-

stant at T=15 turns

• i, action index, j = {c, h, b},

• j, agents, j = {0, 1, ..., 11},

and the following additional terms,

• Aj,i,t, the action of agent j at turn t,

• rt, the score returned to the player at turn t.

Note that the actions chosen by the reinforcement learner are strategy choices.

These result in a draw from a bin of equally likely actions associated with that strategy.

These actions were binned by subject matter experts based on the strategy they were most

closely associated with. There is variance between the impact on the score of actions within

each bin, resulting in a noisy reward signal for each strategy choice.

2. RL Formulation and Empirical Results

In this section, we describe three formulations explored with UrbanSim. The for-

mulations differ in the state information provided to the agent and the timing of the reward

signal.

a. Case 1 Formulation

Initially, we can formulate the problem as a sequential sampling problem

allowing our agent to make a single decision on strategy at the beginning of the game and

then receiving a score following the completion of the game with no opportunity to adjust

strategy. This reduces the problem to a single state problem with an action space consisting

of all possible combinations of the three actions. In this case, the default behavior of the

system is to allocate each strategy to the third of the game in which it is specified in the

ordering of the characters. for example, a strategy of “clear, hold, build” will result in the

122

use of a “clear” strategy by all agent during the first third of the game, a “hold” strategy

the second third, and a “build” strategy during the final third of the game. The actions

associated with each strategy can also be partitioned as “lethal, non-lethal, mixed” and

further as “clearly correct, mixed”. This results in 162 strategy combinations, or arms, that

must be explored.

b. Case 1 Empirical Results

In order to gain insight into the true value of each arm we first simply ran

each of the 162 strategy choices for 30 replications each, with a unique random seed for

each of the 30 replications, see Figure 32 and Figure 33. The results clearly indicate that

some strategies are more preferable than others and that indeed it is reasonable to formulate

this as a noisy bandit problem.

123

Figure 32: Mean and standard error of the final score of a 15 turn game following 30

replications of each of the 27 strategy combinations.

124

Figure 33: Mean and standard error of the final score of a 15 turn game following 30

replications of each of the 162 strategy combinations.

125

Table 8: Recommended strategies following 1000 training sessions by algorithm policy

pair.

ALGORITHM-π STRATEGY

DQ-C, BOLTZMANN MKHBC

DQ-C, ε-GREEDY SNHHB

Q(λ), BOLTZMANN MRHHC

Q(λ), ε-GREEDY MKBCC

SARSA(λ), BOLTZMANN MRHHC

SARSA(λ), ε-GREEDY MKBCC

We next formulated this as a 162 arm bandit problem for the purpose of

understanding how long a learner might take to arrive at the optimal policy. We compare the

results obtained using DQ-C, Q(λ), and SARSA(λ) paired with Boltzmann and ε-greedy

strategies, see Figure 34. In this case we used the empirical maximum observed value as

the best score in our regret calculations. Note that using this approach we could understand

the learning-time required for a learner to arrive at the optimal policy by modeling this as

a bandit problem outside of UrbanSim using the observed mean and variance of of each

strategy as the reward on each arm. We see, Figure 34, that DQ-C paired with ε-greedy

minimizes regret over the course of 1000 15 turn games with fixed parameters. Parameters

used for each algorithm were set to the parameters which produced the best results in the

noisy-bandit case.

126

Figure 34: Regret per turn and mean total regret for 162-arm bandit formulation of Urban-

Sim constant exploration rate.

We also compare the performance of the algorithms using a decaying explo-

ration rate, see Figure 35. The maximum score on this game is 600, the regret total regret

and regret per turn for each pair are shown below following the completion of 500 games.

Given the size of the action space we adopt a search then converge approach to control the

level of exploration, with the remainder of the parameters tuned to the settings identified in

our exploration of the noisy 10-arm bandit.

127

Figure 35: Regret per turn and mean total regret for 162-arm bandit formulation of Urban-

Sim using decaying exploration rate.

128

Table 9: Recommended strategies following 500 training sessions by algorithm policy pair

using a decaying exploration strategy.

ALGORITHM-π STRATEGY

DQ-C, BOLTZMANN MKHBC

DQ-C, ε-GREEDY SNBHH

Q(λ), BOLTZMANN MRBCH

Q(λ), ε-GREEDY SKCBB

SARSA(λ), BOLTZMANN MRBCH

SARSA(λ), ε-GREEDY SKCBB

We gain the following insights from this set of experiments,

• Formulating the simplified problem as a bandit allows us to effectively use RL in a

sequential sampling role to adaptively adjust the design of experiments.

• When used in a sequential sampling setting to determine the optimal action choice

the use of a high level of exploration is required initially to ensure broad sampling

given a relatively small number of trials. While not a primary topic of this thesis,

it is interesting to note that with only 500 replications we are able to identify a

strategy with a value of 320 only 30 points below the max observed using batch

runs with consumed a total of 4860 runs.

c. Case 2 Formulation

We can gain insight into the optimal policy for each agent each turn by incor-

porating the this information into the state description. Here we define S = 〈agent, turn〉.

The action set consists of twelve possible strategy choices,

A = 〈mnc,mnh,mnb,mkc,mkh,mkb, snc, snh, snb, skc, skh, skb〉 (41)

129

As previously described, each strategy specifies a bin of actions that are

categorized according to the three descriptors. In this case we use the following bin de-

scriptions.

• m/s, access to either the full set of actions described by the following to categories

or only those binned as smart

• n/k, access to either kinetic or non-kinetic bins

• c/h/b, access to either the clear, hold or build bin of actions

The reward function provides a numeric reward signal to the agent at the

completion of each turn as in the case of a human player.

d. Case 2 Empirical Results

In this case we allow the agent to select actions by agent by turn, with a

numeric reward following each turn with an initially high level of exploration that begins

to decay after 500 games. Following the completion of 1000 games DQ-C provided the

lowest end of game regret, see Figure 36.

130

Figure 36: Regret per 15 turn game and total regret over 1000 games with decisions made

by agent by turn.

DQ-C paired with ε-greedy provided the best empirical performance, fol-

lowed by DQ-C paired with Boltzmann in this case. The size of the state space and frequent

exploration likely contributed to Q(λ)’s relatively poor performance. SARSA(λ) paired

with a Boltzmann strategy rounded out the top three, see Figure 37.

131

Figure 37: Mean score over 1000 games with decisions made by agent by turn for each

algorithm policy pair.

Using information collected during the run we examine the value of each

(s, a) as in the case of the battalion commander, see Table 10.

132

Table 10: Learned policy for Battalion Commander by turn for 15 turn UrbanSim game

using DQ-C.

STRATEGY 1 2 3 4 5 6 7 8

SKC 9.4E-316 4.8E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

SKH 2.3E+02 2.4E+02 2.4E+02 2.4E+02 2.4E+02 2.4E+02 2.4E+02 2.5E+02

SKB 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

SNC 2.4E+02 2.4E+02 2.3E+02 2.3E+02 2.4E+02 2.4E+02 2.4E+02 2.4E+02

SNH 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

SNB 2.3E+02 2.6E+02 2.3E+02 2.4E+02 2.3E+02 2.4E+02 2.4E+02 2.5E+02

MKC 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

MKH 2.6E+02 2.3E+02 2.6E+02 2.4E+02 2.4E+02 2.4E+02 2.4E+02 2.3E+02

MKB 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

MNC 2.4E+02 2.4E+02 2.4E+02 2.6E+02 2.3E+02 2.4E+02 2.4E+02 2.4E+02

MNH 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

MNB 0.0E+00 2.4E+02 2.3E+02 2.3E+02 2.4E+02 2.4E+02 2.4E+02 2.4E+02

9 10 11 12 13 14 15

SKC 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

SKH 2.4E+02 2.5E+02 2.5E+02 2.6E+02 2.5E+02 2.6E+02 2.6E+02

SKB 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

SNC 2.5E+02 2.5E+02 2.6E+02 2.6E+02 2.6E+02 2.6E+02 3.0E+02

SNH 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

SNB 2.4E+02 2.5E+02 2.6E+02 2.9E+02 2.5E+02 2.6E+02 2.6E+02

MKC 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

MKH 2.5E+02 2.4E+02 2.9E+02 2.6E+02 2.6E+02 2.6E+02 2.6E+02

MKB 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

MNC 2.5E+02 2.8E+02 2.5E+02 2.6E+02 2.6E+02 2.6E+02 2.6E+02

MNH 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

MNB 2.5E+02 2.5E+02 2.5E+02 2.5E+02 2.6E+02 0.0E+00 2.6E+02

We can use this information to develop a policy matrix for each algorithm

and exploration strategy, see Appendix G and Appendix H, employed that reflects the ap-

plication of a greedy strategy following 1000 15 turn games. This policy matrix provides

the recommended strategy for each agent for each game turn, see Table 11 and 12. Note

that each algorithm exploration policy pair produces a slightly different matrix, reflective

of the difference in the mean scores of each algorithm.

133

Table 11: Learned policy for all agents by turn for 15 turn UrbanSim game using DQ-C,

ε-greedy.

STRATEGY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

BATTALION COMMANDER MKH SNB MKH MNC SKC MNH MNH SNH SKB MNC MKH SNB SNH MNH SNC

CA UNIT SNC MKH MKH MNH MKB MKB SNC SNH MNC SKH SNH MNH SKC MKH SNH

E CO A SKH SKC SKH MKC MNB SKB MNC MNH MNB MKC MNC MKH MNH MKB SKH

E CO B SNB MKB SNC MKC SNH SNB MKB SKB SNC SNC SNB SKH MNH MKB MNB

F CO A SNB SKC SNH SKC SKB SKB SNC SNB MNH MNH MNC SNC MNC SKH MNC

F CO B SNH SKH SKC MKB SNC SKC MKB SNC SNC MNC MKB SNC SNH MKC MKB

G CO A SNB SKB MNC MKB SNH SKB MNH SNH MKC SNH SKB SKC SKC MNC SNB

G CO B SNB MNC SNB MNH SNH MKC SKC MNH SKH MKC SNB SKC SKC SNH SNH

H CO A SKC MNH MNH SNB SKH SKB SKH SNB SKB MKH SKC SNB SKC SKH SNC

H CO B SNH MNB SNB MKB SKH MKB SKC MNC SNB SKC SNB MNB SKH SKH SNH

QRF SNH SKH MNH MKC MNB MKH MNB SKH SKC SNH SKH MNH MKH MNH SKB

Table 12: Learned policy for all agents by turn for 15 turn UrbanSim game using DQ-C,

Boltzmann.

STRATEGY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

BATTALION COMMANDER MKH MNH MNH SKC MKH MKB MKB MNB SNH SKB MNB SKC MKB SKC SNC

CA UNIT MKB SNC MNB SKC MKB MKH SNB MNH SNH SKC MNH SNC SKC SNH MNH

E CO A SNH SKH MKH SNC SKB MKC MNC SKB MKC MNH MKB MNH SNC SNC MKB

E CO B MNB SNH MKC SNC MKH SKC SNB MNH SNH SNB SKC MNH SKB MNC SNC

F CO A MNH MNC SKC MKC SNB SKB SKC MKH SNB SNB SNB SNH SNC MKC MNB

F CO B MNH MKB SNB SNC MKH SNH MKH MKH SKH MKH SNH SNC MKB MKC MKH

G CO A SNH MKB SNC MNH SNH MNC SKH MNB SKC MNB MKC MNC SNH SKB SNC

G CO B MNH SNC MKB SNC MKB MKB SKB SNH MKC SNH SNH MKC MKB SKB MKB

H CO A MKH SNC SKC MKC MNB MKC SKC MNB MNH MNH SKB SKB MNH SKB MKB

H CO B SNB SKC MKB SKB SKH SKC MNB MNC MNC SKB SNC SKB SNB MNC SKH

QRF SNB SKB SNB SKB SNB MNC SNB MNC SKH SKB MNB SKH MKH SNC SKB

Using these policy tables, see Appendix H, a training developer could un-

derstand how well the reward signal from the training game supported the stated learning

objectives.

e. Case 3 Formulation

We adjust the formulation in this case, defining the state by agent and turn as

for case 2, but with the action space expanded to the full problem the human player faces.

The learning problem consists of learning how to choose actions for 11 agents across 15

134

game turns. The action space for each agent is expanded from the 12 strategy choices

observed in the previous case to an action space in excess of 300 for some agents. The

action space for each of the agents is shown in Table 13

Table 13: Actions available by agent each turn

AGENT ACTIONS PER TURN

BATTALION COMMANDER 42

CA UNIT 112

E CO A 341

E CO B 341

F CO A 341

F CO B 341

G CO A 341

G CO B 341

H CO A 341

H CO B 341

QRF 152

The reward function is the same as defined previously for case 3. For this

case we use the algorithm policy pair from case 3 that provided the best performance, DQ-C

paired with ε-greedy.

f. Case 3 Empirical Results

The RL system was configured to explore for the first 1000 games and then

to begin reducing the ratio of exploration and exploitation for the next 300 games, see

Figure 38. Initially, ε was set to 1.0 due to the large state-action space and was reduced

following the completion of game 1000 like, ε = εinitial
Ngames−1000

for the remainder of the

period with a final ε = 1
300

. We produce a by agent by turn policy, see Table 14, for DQ-C

135

paired with ε-greedy only due to run time constraints. DQ-C paired with ε-greedy was

chosen because of its previously discussed strong performance.

Figure 38: End of game score for 1000 learning games and 300 greedy games.

It is interesting to note that the final score from the greedy policy is higher

than any previously observed during the learning period.

136

Table 14: Learned action policy for all agents by turn for 15 turn UrbanSim game using

DQ-C, ε-greedy.

STRATEGY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

BATTALION COMMANDER 13 5 12 8 31 36 41 3 40 29 35 25 8 33 15

CA UNIT 6 88 14 5 88 51 33 69 77 38 18 42 30 38 63

E CO A 178 312 131 32 152 261 57 71 234 299 236 235 318 266 230

E CO B 282 236 324 314 249 193 125 114 141 151 195 104 28 114 333

F CO A 322 212 16 325 320 258 60 133 114 162 200 245 253 317 290

F CO B 262 170 337 102 291 331 154 169 312 2 166 149 1 142 55

G CO A 321 233 254 169 77 46 35 46 187 31 233 93 28 73 57

G CO B 48 166 158 327 166 301 26 305 160 292 108 111 179 98 317

H CO A 252 294 139 290 180 27 177 286 297 109 338 276 42 224 236

H CO B 337 20 322 289 319 11 181 289 49 78 338 224 285 332 152

QRF 49 56 69 37 86 92 98 108 53 25 89 46 34 93 13

Using this table, see Table 14, scenario or game developers can examine

the paths to ensure that the desired behaviors are being reinforced by the training system.

We can then turn these index tables into the actual action descriptions shown chosen by a

human player, see Tables 15,16,17,18,19.

137

Table 15: Learned actions for all agents from turn 1-3 in 15 turn UrbanSim game using

DQ-C, ε-greedy.

AGENT 1 2 3

BATTALION COMMANDER GIVE PROPAGANDA-

KASIRIYAH QUARTER

GIVE PROPAGANDA-

MARKET DISTRICT

GIVE PROPAGANDA-

KASIRIYAH SOUTH

QUARTER

CA UNIT GIVE PROPAGANDA-

NAHIYAT MUSALLA

REPAIR-KASIRIYAH

QUARTER SCHOOL

GIVE PROPAGANDA-

HISAR BAKR

E CO A REMOVE-HIGHWAY 5 RECRUIT SOLDIERS-

NAHIYAT ABU QASIM

REPAIR-SHIPPING

TERMINAL CEMENT

PLANT

E CO B CORDON AND

KNOCK-NORTHERN

AREA

PATROL

NEIGHBORHOOD-

HISAR BAKR

RECRUIT SOLDIERS-

KASIRIYAH SOUTH

QUARTER

F CO A RECRUIT SOLDIERS-

NAHIYAT ARTET

ATTACK GROUP-

SHIITE DEATH

SQUADS

ARREST PERSON-

RUSHDI KALIQ

F CO B SEIZE STRUCTURE-

GRANARY 2 (IED

MANUFACTURING

PLANT)

REMOVE-MINARET RECRUIT POLICE-

NAHIYAT ARTET

G CO A RECRUIT SOLDIERS-

KASSAD QUARTER

PATROL

NEIGHBORHOOD-

NAHIYAT ARTET

SEIZE STRUCTURE-

MEKEL BUS STATION

G CO B CORDON AND

SEARCH-KASIRIYAH

SOUTH QUARTER

REMOVE-ADNAN

MOSQUE

REPAIR-POLICE

WESTERN HQ

H CO A SEIZE STRUCTURE-

FIRING RANGE

CORDON AND

KNOCK-KASIRIYAH

QUARTER

REPAIR-FIRING

RANGE

H CO B RECRUIT POLICE-

NAHIYAT ARTET

ARREST PERSON-

POLICE COLONEL

QASIM BASHIR

RECRUIT SOLDIERS-

NAHIYAT ARTET

QRF REMOVE-NAHIYAT

ARTET MOSQUE

REMOVE-KASSAD

WATER STORAGE

FACILITY

REMOVE-HWY 2 GAS

STATION

138

Table 16: Learned actions for all agents from turn 4-6 in 15 turn UrbanSim game using

DQ-C, ε-greedy.

AGENT 4 5 6

BATTALION COMMANDER GIVE PROPAGANDA-

HISAR KERHAD

HOST MEETING-

DEP MAYOR DABIR

TA’ANARI

HOST MEETING-

MAYOR ANWAR

SADIQ

CA UNIT GIVE PROPAGANDA-

MARKET DISTRICT

REPAIR-KASIRIYAH

QUARTER SCHOOL

HOST MEETING-

POLICE COLONEL

QASIM BASHIR

E CO A TREAT

WOUNDS/ILLNESSES-

TRIBE 7

REPAIR-HASIM ROAD

TEXTILE MILL

SEIZE STRUCTURE-

OMAR HASIM’S

OFFICE

E CO B RECRUIT SOLDIERS-

MALMOUD QUARTER

SEIZE STRUCTURE-

HIGHWAY 5

REMOVE-HIGHWAY 2

BRIDGE

F CO A RECRUIT SOLDIERS-

HISAR BAKR

RECRUIT SOLDIERS-

HISAR SIFIRI

SEIZE STRUCTURE-

CITY MUNICIPAL

COMPLEX

F CO B HOST MEETING-

ABIM UBAYA

CORDON AND

KNOCK-KASSAD

QUARTER

RECRUIT POLICE-

MARKET DISTRICT

G CO A REMOVE-WATER

TREATMENT PLANT

PAY-KURDISH SHEP-

HERDS

CORDON AND

SEARCH-KASSAD

QUARTER

G CO B RECRUIT POLICE-

NAHIYAT ABU QASIM

REMOVE-ADNAN

MOSQUE

SET UP CHECKPOINT-

MARKET DISTRICT

H CO A CORDON AND

KNOCK-HISAR SIFIRI

REMOVE-YAMINAH

MARKET

ARREST PERSON-

OMAR HASIM

H CO B CORDON AND

KNOCK-HISAR KER-

HAD

RECRUIT SOLDIERS-

HISAR KERHAD

GIVE PROPAGANDA-

NAHIYAT ARTET

QRF REMOVE-MEKEL

MARKET

PATROL

NEIGHBORHOOD-

NAHIYAT AYADH

PATROL

NEIGHBORHOOD-

HISAR SIFIRI

139

Table 17: Learned actions for all agents from turn 7-9 in 15 turn UrbanSim game using

DQ-C, ε-greedy.

AGENT 7 8 9

BATTALION COMMANDER GIVE PROPAGANDA-

NAHIYAT AYADH

ADVISE-POLICE

COLONEL QASIM

BASHIR

HOST MEETING-

RUSHDI KALIQ

CA UNIT SUPPORT

POLITICALLY-

TERLAN DEMIKAN

REPAIR-SHIPPING

TERMINAL CEMENT

PLANT

JOINT INVESTIGATE-

MEKEL QUARTER

E CO A DISPATCH

INDIVIDUAL-

EBRAHIM HAFIZ

PATROL

NEIGHBORHOOD-

KASIRIYAH SOUTH

QUARTER

SET UP CHECKPOINT-

NAHIYAT AYADH

E CO B SUPPORT

POLITICALLY-RUSHDI

KALIQ

REPAIR-MEKEL BUS

STATION

REPAIR-HIGHWAY 2

BRIDGE

F CO A REPAIR-TRASH DE-

POT

SUPPORT

POLITICALLY-RUSHDI

KALIQ

REPAIR-HIGHWAY 2

F CO B REMOVE-WATER

TREATMENT PLANT

RECRUIT SOLDIERS-

NAHIYAT ABU QASIM

GIVE PROPAGANDA-

MALMOUD QUARTER

G CO A CORDON AND

SEARCH-KASSAD

QUARTER

REMOVE-CITY MU-

NICIPAL COMPLEX

TREAT

WOUNDS/ILLNESSES-

TRIBE 1

G CO B SET UP CHECKPOINT-

HISAR SIFIRI

REPAIR-IRAQI ARMY

BDE HQ

CORDON AND

KNOCK-NAHIYAT

ARTET

H CO A CORDON AND

KNOCK-MARKET

DISTRICT

SET UP CHECKPOINT-

NAHIYAT ABU QASIM

HOST MEETING-

MAYOR ANWAR

SADIQ

H CO B CORDON AND

KNOCK-HISAR KER-

HAD

CORDON AND

SEARCH-KASIRIYAH

QUARTER

PAY-TRIBE 3

QRF SEIZE STRUCTURE-

AL-HAMRA’ CEN-

TRAL SCHOOL

REMOVE-HIGHWAY 2

BRIDGE

DISPATCH

INDIVIDUAL-OMAR

HASIM

140

Table 18: Learned actions for all agents from turn 10-12 in 15 turn UrbanSim game using

DQ-C, ε-greedy.

AGENT 10 11 12

BATTALION COMMANDER HOST MEETING-

RUSHDI KALIQ

HOST MEETING-

EBRAHIM HAFIZ

GIVE GIFT-ALI BAKR

OBEIDI

CA UNIT JOINT INVESTIGATE-

MEKEL QUARTER

TREAT

WOUNDS/ILLNESSES-

TRIBE 1

JOINT INVESTIGATE-

NAHIYAT ARTET

E CO A SET UP CHECKPOINT-

NAHIYAT AYADH

PATROL

NEIGHBORHOOD-

HISAR BAKR

PATROL

NEIGHBORHOOD-

KASIRIYAH QUARTER

E CO B REPAIR-HIGHWAY 2

BRIDGE

REMOVE-AL-QASSAS

BRIGADE SAFEHOUSE

HOST MEETING-

JAFAR UDNAN

F CO A REPAIR-HIGHWAY 2 REMOVE-JAAS

SAFEHOUSE

SEIZE STRUCTURE-

AL-HAMRA’ CITY

HOSPITAL

F CO B GIVE PROPAGANDA-

MALMOUD QUARTER

REMOVE-ADNAN

MOSQUE

REPAIR-GRANARY 2

(IED MANUFACTUR-

ING PLANT)

G CO A TREAT

WOUNDS/ILLNESSES-

TRIBE 1

PATROL

NEIGHBORHOOD-

NAHIYAT ARTET

JOINT INVESTIGATE-

HISAR KERHAD

G CO B CORDON AND

KNOCK-NAHIYAT

ARTET

HOST MEETING-

ASAD

HOST MEETING-

TERLAN DEMIKAN

H CO A HOST MEETING-

MAYOR ANWAR

SADIQ

RECRUIT POLICE-

KASIRIYAH SOUTH

QUARTER

SEIZE STRUCTURE-

SEWAGE PROCESSING

FACILITY

H CO B PAY-TRIBE 3 RECRUIT POLICE-

KASIRIYAH SOUTH

QUARTER

PATROL

NEIGHBORHOOD-

MALMOUD QUARTER

QRF DISPATCH

INDIVIDUAL-OMAR

HASIM

PATROL

NEIGHBORHOOD-

NAHIYAT MUSALLA

REMOVE-BAKR DIS-

TRICT SCHOOL

141

Table 19: Learned actions for all agents from turn 13-15 in 15 turn UrbanSim game using

DQ-C, ε-greedy.

AGENT 13 14 15

BATTALION COMMANDER GIVE PROPAGANDA-

HISAR KERHAD

HOST MEETING-

POLICE COLONEL

QASIM BASHIR

GIVE GIFT-FOUAD

SULIMANI

CA UNIT PAY-TRIBE 4 JOINT INVESTIGATE-

MEKEL QUARTER

SUPPORT

POLITICALLY-JAFAR

UDNAN

E CO A RECRUIT SOLDIERS-

MEKEL QUARTER

SEIZE STRUCTURE-

AL-QASSAS BRIGADE

SAFEHOUSE

PATROL

NEIGHBORHOOD-

HISAR KERHAD

E CO B TREAT

WOUNDS/ILLNESSES-

KURDISH SHEPHERDS

SUPPORT

POLITICALLY-RUSHDI

KALIQ

RECRUIT POLICE-

NAHIYAT MUSALLA

F CO A SEIZE STRUCTURE-

TRANSFORMER

STATION

RECRUIT SOLDIERS-

NAHIYAT MUSALLA

CORDON AND

KNOCK-HISAR SIFIRI

F CO B GIVE PROPAGANDA-

NAHIYAT ABU QASIM

REPAIR-KASIRIYAH

QUARTER SCHOOL

RELEASE PERSON-

JAFAR UDNAN

G CO A TREAT

WOUNDS/ILLNESSES-

KURDISH SHEPHERDS

DISPATCH

INDIVIDUAL-MAYOR

ANWAR SADIQ

RELEASE PERSON-

POLICE CPT AL-

NASSER

G CO B REMOVE-ARTET DIS-

TRICT SCHOOL

JOINT INVESTIGATE-

KASIRIYAH QUARTER

RECRUIT SOLDIERS-

NAHIYAT MUSALLA

H CO A CORDON AND

SEARCH-NAHIYAT

MUSALLA

PATROL

NEIGHBORHOOD-

MALMOUD QUARTER

PATROL

NEIGHBORHOOD-

HISAR BAKR

H CO B CORDON AND

KNOCK-HISAR AD-

NAN

RECRUIT POLICE-

NAHIYAT MUSALLA

REPAIR-HASIM ROAD

TEXTILE MILL

QRF REMOVE-AL-

HAMRA’ CITY HOSPI-

TAL

PATROL

NEIGHBORHOOD-

KASSAD QUARTER

DISPATCH

INDIVIDUAL-FOUAD

SULIMANI

3. Insights on the Verification of Training Simulations

One of the chief insights was the notion of treating the training simulation as a ban-

dit problem. Viewing the problem in this manner, the challenge from the design standpoint

is to specify the reward on each arm so as to correctly reinforce the behaviors associated

with the learning objectives. Since the learning objective is at the strategy level, the mean

value of the action bin associated with each strategy specifies the reward on each of the

strategy arms. This is equivalent to a noisy bandit problem. Using this paradigm, the level

of difficulty of the training simulation could be directly controlled by adjusting the noise on

the reward signal. Following an easy-to-hard progression, the level of noise associated with

142

the strategy arms could start out at 0 and be incrementally adjusted based on the trainees

progression, with a goal of trainees maintaining the optimal policy even in a noisy environ-

ment in the most difficult cases. The development of optimal polices for each agent could

also support the use of semi-automated forces to allow trainees to focus on a single role

in the game. This application areas is open to much future research that builds upon the

results documented here and in the master’s thesis of U.S. Army Major Brian Voght, whose

research was supported by this effort.

D. CONCLUSIONS

In this section, we demonstrated novel applications of RL within three different

use cases relevant to military modeling and simulation, the assignment and scheduling of

unmanned systems, the representation of human decision making in a combat simulation,

and in the verification of the reward structure in a training simulation.

In each case, the use of RL was unique and served to address known deficiencies or

needs within the target simulation. In ASC-U, we observed that RL was could overcome

specific case in which the finite horizon optimization approach failed. In COMBATXXI, we

observed that the incorporation of RL in specific decision points where domain knowledge

is available could provide adaptive behaviors more representative of human behavior and

potentially represent the various training levels present in a real population. In UrbanSim,

RL demonstrated its utility as an approach to address the challenge of verifying that the

reward signal provided to a trainee was reinforcing the state learning objectives. In each

case, the performance of DQ-C was competitive with the comparison algorithms.

• The definition of state and the size of the state space greatly impact the learning rate

of RL techniques.

• The use of domain knowledge, as a human would, can greatly improve the perfor-

mance of RL methods.

143

• The identification of the appropriate decisions that potentially require RL, such as

decision nodes on a decision tree, can guide the effective use of RL.

• In application within combat simulation, the use of a training period to allow be-

haviors to form is likely required prior to the conduct of record analysis runs.

• The use of RL as a means of verifying the reward structure within training simu-

lations is a natural fit for those cases where the verification does not lend itself to

standard design of experiments techniques.

In the next chapter we develop a practical cognitive architecture for use in discrete

event simulation that places RL into the broader context of human behavior models.

144

V. DEVELOPMENT OF A PRACTICAL COGNITIVE
ARCHITECTURE

We appeal to ordinary perception to arrive at our physical theories, yet those
same theories seem to undermine that everyday perception, which is rich in
meaning. - Bertrand Russell, Analysis of Matter (1927)

The purpose of this section is to review the literature and current state of the art

regarding cognitive social simulations, cognitive architectures and their application in sup-

port of military decision making and analysis. Cognitive social simulation, a derivative of

agent based social simulation, combines the use of cognitive architectures with traditional

agent based social simulation approaches.

This section develops a practical cognitive architecture that places reinforcement

learning within the broader context of human behavior models. We develop a conceptual

model of the cognitive architecture and describe its implementation in a discrete event

simulation framework. We also describe the application of reinforcement learning and the

cognitive architecture within an agent based social simulation. Results reported in this

section were previously discussed in several conference proceedings, an accepted in-press

journal article (S. Papadopoulos et al., 2013), and student thesis work supported by this

effort (J. K. Alt et al., 2011; Ozcan et al., 2011; Ozkan, 2011; M. Papadopoulos, 2010;

Pollock et al., 2011; McKaughan, 2011).

A. GENERAL FRAMEWORK AND IMPLEMENTATION DESCRIPTION

The cognitive architecture proposed in this research provides a minimalist approach

for modeling human decision making based on the concept of situation. While multiple

cognitive architectures exist in the literature, the framework proposed here seeks to in-

corporate the impact on relevant concepts from cognitive science, psychology, and social

psychology in a relatively simple manner. The intent is to avoid a kitchen sink approach

by identifying a framework to account for the influence of these notions using the smallest

145

number of concepts and parameters possible. The prototype architecture provides a frame-

work for experimentation with software agents for use in agent based social simulations

with potential for the use of the architecture in conjunction with empirical data collection

efforts. The need for an agent decision making architecture centered on the recognition of

a given situation is highlighted by the literature on decision making and the need to reduce

complex state spaces in agent environments (Klein, 1993; Russell & Norvig, 2010).

Agent architectures capable of recognizing relevant situations enable the use of

algorithms such as RL (Sutton & Barto, 1998). RL provides multiple techniques to enable

software agents to select actions in given situations based on a reward policy specified by

the modeler. The use of utility based rewards allows these policies to be tailored to the

desired use case and role (J. K. Alt et al., 2011).

Figure 39: Practical cognitive architecture full conceptual model.

146

Applications such as battlefield command and control systems and agent based so-

cial simulations require agents capable of allocating selective attention to relevant percepts

in a given context. This combination of bottom up and top down processing in conjunc-

tion with the constraints of working memory facilitate the construction of a situation. The

framework allows for the representation of human behavioral phenomena such as change

blindness, where changes in a scene are not observed due to the effects of top down pro-

cessing on selective attention. This framework also provides a mechanism for agents to

participate in collective learning within a social network, to determine which agents to

communicate with and to determine what messages should be attended to.

This section describes the proposed cognitive architecture from a conceptual stand-

point.

1. Perception

The main function of the perception module is to form a situation constrained by

the limits of working memory and informed by selective attention. Percepts arrive to the

perception module via sensors that sense information from the environment and from the

internal agent feedback mechanisms. Note that this architecture treats inter-agent commu-

nications through the receipt of information via percepts and the decision to communicate

via action selection.

Percepts are screened for relevance based on selective attention and if found rel-

evant to the current situation are processed into working memory. Selective attention is

driven by top down processing from the task and context (Anderson, 2005; Anderson &

Schunn, 2005). Selective attention is influenced by the current motivations and emotions

from the meta-cognition module, which serves to identify the goal. In communications

selective attention is informed by information regarding the relationship with the other

agent and notions such as trust. Working memory is limited to 7-10 percepts, the gener-

ally accepted limit (Wickens & Hollands, 2000). The final set of percepts is considered a

description of the current situation, considering both external perceptual information and

information from the agents internal state.

147

2. Meta-cognition

The meta-cognitive module provides the agents top-down direction based on moti-

vations and emotions elicited by a given situation input from the perception module. Meta-

cognition is broadly defined as any cognitive process that monitors or controls other aspects

of cognition or thinking about thinking (Davis & Venkatamuni, 2010). Meta-cognition is

described by Flavel as occurring in three phases: 1) meta-cognitive knowledge stores in-

formation regarding the environment, task, and known strategies; 2) meta-cognitive expe-

rience stores information describing previous means of achieving a given result; 3) meta-

cognitive regulation describes the process of monitoring and controlling progress on cog-

nitive tasks (Flavell, 1979).

The meta-cognitive module also hosts the agents information regarding the motiva-

tion of agents behavior. The input to the meta-cognition module is the most recent situation

provided by the perception module. Using this updated situation the meta-cognition mod-

ule conducts an update to determine which motivations are active and to assess the impact

of the new situation on its goal state. The situation object in conjunction with information

from long-term memory is used to form expectations about likely future situations (J. K. Alt

et al., 2011). Goals and methods are selected using input on motivation, emotional state,

and expectations in conjunction with long-term memory. As a result of this step selective

attention is updated based on the new goal and the updated situation and goal are passed to

the action selection module.

3. Long-term Memory

Long-term memory stores information learned over-time for future retrieval based

on the situation. Reward histories from prior action selections as well as long-term beliefs

and issue stances are maintained in long-term memory. Relevant actions for given situa-

tions as well as mappings of equivalent situations can be returned from long-term memory

based on need in a given situation.

148

4. Action Selection

Situation based action selection facilitates the reduction of the state space of the

model through the notion of equivalent states being categorized as unique situations. For

each unique situation there exists a set of relevant candidate actions. Actions have an

associated activation level provided by a utility based RL algorithm (Sutton & Barto, 1998).

If the agent has enough experience, defined as a specified number of trials of each action,

then the agent action selection is controlled by a softmax function, such as the Boltzman

distribution, with a greedy setting, replicating recognition prime decision making (Klein,

1993). If the agent has some level of experience in the situation then action selection can

still be conducted using the softmax function, but with an exploratory setting. If the agent

has no experience in the situation, then mental simulation is conducted, with the agent

using available knowledge regarding the environment to project future states based on the

actions currently available (Klein, 1993; Kunde, 2005). An alternative to the case where

sufficient experience is not present is to base the decision making mode on the risk level

associated with the given situation. In this formulation, if the requisite experience to use

recognition prime decision making is not present, when risk is low the agent simply uses

the softmax function with an exploratory setting, while if risk is high the agent uses mental

simulation.

B. GENERIC IMPLEMENTATION DESCRIPTION

This section provides an overview of the implementation of the conceptual model in

discrete event simulation (DES) (A. H. Buss & Sanchez, 2002; A. Buss, 2002; A. H. Buss

& Sanchez, 2005; A. Buss, 2009). The conceptual model was implemented by Mr. Harold

Yamauichi of Roland’s and Associates as part of TRAC-MTRY’s research on Irregular

Warfare. Discrete event simulation is a form of simulation that represents phenomena of

interest from the real-world through with state variables, parameters, events and schedul-

ing edges. It is distinguished from time-stepped models in its handling of time. In a time

stepped model, time advances at a fixed-time increment throughout the course of the sim-

149

ulation. In a DES model time advance is controlled by a master event list, which advances

time in uneven increments in accordance with the next scheduled event (A. Buss & Blais,

2007; A. Buss, 2001).

Event graphs provide a graphical representation of a discrete event simulation. In

this form, nodes represent events and edges represent scheduling relationships between

events. State variables change in a piecewise constant manner with the occurrence of events

within the simulation in accordance with transition functions contained in events. The

cognitive architecture consists of five main components at the top-level: PerceptUmpire,

Perception, MetaCognition, ActionSelection, and LongTermMemory.

Figure 40: top-level view of DES cognitive architecture.

The PerceptUmpire serves as the interface between the agent and the environment.

This class packages information about the environment and the internal state of the agent

into atomic percepts that are provided to the agent in accordance with the rules provided

by the modeler. This is the class that should require the most extensive work in regard to

integrating the cognitive architecture into other environments. The PerceptUmpire not only

provides a means of interfacing with the environment but also ensures that the modeler can

control the information that the agent can access. This reduces the likelihood of the agent

gaining access to unintended or unrealistic information from the environment. Since many

of the capabilities being analyzed in support of the future force are intended to provide

150

timely information to decision makers, the need to ensure that only information that a

particular command and control system would provide is included.

The PerceptUmpire consists of two events: ReceiveInformation and PerceptArrive.

The ReceiveInformation event listens for events within the agent class and events within

the environment, with supporting signatures for each event type that the agent has access

to and packages the information into an atomic percept. This percept is then passed to the

agent which treats it as an arrival event.

The Perception component filters percepts received based on relevancy, fills work-

ing memory and forms a situation object composed of the atomic percepts stored in working

memory. The Perception component treats the arrival of each percept as an arrival event.

The Perception component contains the following events: Arrival, RelevancyCheck, Rel-

evantPercept, ProcesscurrentSituation, EndProcess, and StartMetaCognition. The Arrival

event schedules a RelevancyCheck event. The relevancy check is intended to filter per-

cepts based on their age and on their salience given the agents current goals. A percept is

considered relevant if its time stamp is recent enough and its type is salient to the current

goal. RelevantPercept is scheduled with a Boolean scheduling edge, and once the number

of relevant percepts fills the available working memory a ProcessCurrentSituation event is

scheduled. Working memory is constrained in accordance with the literature on human

information processing. ProcessCurrentSituation creates a situation object and schedules

EndProcess which in turn schedules a StartMetaCognition event. These events are further

organized into three module: Selective attention, Working memory, and Situation forma-

tion.

In MetaCognition the situation object is used to determine current relevant moti-

vations, assess the agents internal state in the given situation, select goals and methods to

achieve them and updates long-term memory. From a high level meta-cognition contains

two modules. MetaCognition listens for the StartMetaCognition event in the Perception

component. StartMetaCognition takes the situation object formed in the Perception com-

ponent and schedules an UpdateLongTermMemory event and an UpdateMotivation event.

151

The UpdateMotivation event takes the situation object and determines the change to the

agents perceived motivations based on the new information. The view on motivation taken

in this work is inspired by Kenricks work to update Maslows hierarchy of needs, see Figure

41,but the general framework need not be limited to this set for the general case (Kenrick,

Griskevicius, Neuberg, & Schaller, 2010). An activation level for each motivation is calcu-

lated based on the agents perception of the needs associated with each motivation. As the

needs for a given motivation are satisfied the activation level of that motivation is reduced.

The UpdateMotivation event schedules a CognitiveAppraisal event. This event determines

an overall level of satisfaction for the agent based on the current motivations. If the agent is

completely satisfied all of its needs are met and its motivations are equally weighted. The

CognitiveAppriasal event schedules a FormExpectation event. The FormExpectation event

uses the current situation to determine the expected satisfaction level in the next most likely

situation based on its experience. The difference between current and expected satisfaction

is used to determine whether the agents outlook is optimistic or pessimistic. The Cogni-

tiveAppraisal event schedules a GoalsAndMethods event. This event determines the most

relevant goal based on the motivations selects a top-level method to achieve that goal from

the set of relevant methods using RL. If the goal has not changed from the current goal,

then the agent continues with its currently scheduled behavior.

152

Figure 41: Kenrick’s updated to Maslow’s hierarchy of needs.

The LongTermMemory component contains the agents history based on its expe-

rience in the environment as well as long-term belief networks related to its view of the

world. Event and reward histories are stored for use during RL. The belief networks docu-

ment the agents world-view on certain issues and is represented in a Nave Bayes network.

Otherwise the GoalsAndMethods event in turn schedules an IdentifyBehaviors event which

returns the behaviors associated with the chosen method. The ActionSelection component

identifies the behaviors associated with the chosen method and determines the appropri-

ate method of decision making based on the agents experience with these behaviors. This

component was inspired by Kleins recognition prime decision making. Once an action

is selected the agent schedules the action within the environment. The ActionSelection

component listens for an IdentifyBehavior event. The IdentifyBehavior event schedules an

153

IdentifyDecisionMethod event. Based on the experience of the agent in the situation, as

reflected by the number of trials of each of the relevant actions associated with the selected

method, either a RecognitionPrimedDecisionMaking event, an ExplorationLearning event,

or a MentalSimulaiton event is scheduled. Each of these methods of decision making re-

sults in the scheduling of a SelectAction event which in turn schedules an InvokeAction

event.

The cognitive architecture was implemented and tested by Harold Yamauichi of

Roland’s and Associates targeted for use in the Cultural Geography model. In the next

section, we review the literature on social cognition in order to understand how cognitive

architectures relate to the representation of group cognition, a relevant application areas

where we have applied cognitive architectures to represent the decision making of a popu-

lation segment within a conflict environment (J. Alt et al., 2009).

C. COGNITIVE ARCHITECTURES TO REPRESENT GROUP COGNITION

The concept of social cognition can take on varied meanings depending on the

discipline of the researchers who are using it. In this research social cognition refers to

the social processing and construction of information. The concept is grounded in the

literature on psychology, with roots in the cognitive revolution, and is now largely accepted

by contemporary social psychologists. The notion of social cognition also traces its roots

to sociological theory, where as early as 1898, Durkheim proposed a theory of collective

psychology, suggesting that members of social groups took part in a “collective conscience”

and made use of a common knowledge base (Howard & Renfrow, 2006). The concept of

prototypes, similar to Weber’s notion of “ideal types”, is supported by the use of a social

information processing system, allowing group perceptions of other groups to influence

their behavior in regard to the other group (Howard & Renfrow, 2006).

Social exchange theory, which assumes individuals and groups can be motivated by

rewards, benefits from social cognition, allowing for the consideration of beliefs and atti-

tudes in decision making (Cook & Rice, 2006; Howard & Renfrow, 2006). Note that this

154

also provides us a theoretical basis for the use of reinforcement learning at the group level.

Expectation states theory attempts to explain the process by which humans and groups de-

termine their roles and status in social situations, typically studied in task oriented groups

(Correll & Ridgeway, 2006; Howard & Renfrow, 2006). In this context expectation states

theory helps explain how expectations are formed regarding social identities within catego-

rized groups based on status characteristics to eventually form representations of expected

behavior for each group (Correll & Ridgeway, 2006). Rankings of power and prestige

are generated based this “collective” reward system. Again we see a linkage to the use of

rewards to shape behavior. Critical social psychology seeks to identify the role of power

in social processes (Howard & Renfrow, 2006). The formation of a perception of other

groups, central to the categorizations necessary to conduct the ranking needed for social

interactions, leads to the need for social cognition. The elements of social cognition are

broken into two categories by Howard et al., cognitive structures and cognitive processes

(Howard & Renfrow, 2006).

In this summary we see that the notion of an information processing system present

at the group level matches with the theory from social psychology and that the notion of

behavior shaped by rewards exists at the group level as well.

1. Cognitive Structures

Cognitive structures serve as a store of information in verbal form, with belief, atti-

tudes, and values as examples of early structural forms. Social cognition proposes that

information regarding other individuals or groups is stored in a prototype, constructed

through a synthesis of all information regarding the other group. These prototypes are

used to rapidly assess members of these other groups. Exemplars provide an alternative to

prototypes, but are based on specific experiences with the other group rather than the aver-

age. Schemas provide yet a third alternative, allowing the application of social knowledge

to the entire information processing system through their impact on the organization of

knowledge. Schemas can be used to store knowledge regarding individuals or groups, per-

son schemas, about self (individual or group), self-schemas, regarding roles, and in relation

155

to events. Social representations have been proposed as a social alternative to schemas, be-

ing defined as knowledge that has been generated by consensus and shared with the group,

“commonsense theories about how the world works (Howard & Renfrow, 2006).”

Memory studies have illustrated that memory is shaped by the social context and

existing cognitive structures. Cohen in particular demonstrated this with experiments in

which subjects were shown a video of a woman having dinner with her husband. Subjects

were told the woman was either a waitress or a librarian and were asked to recall details

regarding the video. The subjects responses were consistent with the role they perceived her

to be filling, with memories of the actual content being replaced by the schema associated

with that particular role. Wegner shows that memory occurs at the group level as well as the

individual, with groups dividing information among group members (Howard & Renfrow,

2006).

The impact of language on social cognition is strong, since the mechanism for the

development and storage of group memories is communication facilitated by language.

Group perception of information transmitted in the same language depends on the situa-

tion and the categorization of the sending group (Howard & Renfrow, 2006). The social

knowledge base for a group then might contain facts in natural language that carry specific

meaning for that group distinguished from other groups. From a production system view-

point, the processing of a fact by two groups might result in the activation of completely

orthogonal rules by the production system based on the difference in the social knowledge

base.

The exploration of ideologies, attitudes, beliefs, and behavior by social psycholo-

gists provides a starting point for the identification of social facts for a given population

subgroup. Ideologies, values, and attitudes are distinguished in this literature by their level

of abstraction. Attitudes are generally held toward objects, values tend to focus on notions

such as freedom, and ideologies relate to sets of values and attitudes. Despite the difference

in level of abstraction these concepts share the following attributes: 1) they are all evalu-

ative expressed as a positive or negative value toward an object; 2) they are all subjective

156

based on the individual or groups perception; 3) they all can be either active or inactive

based on the situation; 4) they are interrelated (Maio, Olson, Bernard, & Luke, 2006). Atti-

tudes are more influenced through direct experience, while values and ideologies rely more

on indirect experience with potential sources identified as the family, media, and cultural.

Behavior has more closely been linked to attitudes than values or ideologies (Maio et al.,

2006). Viewed from an information processing perspective then attitudes, ideologies, and

beliefs maintained in social memory, might be used to interpret a given situation and select

the appropriate action. Decisions regarding intergroup relations, shown to rely on social

cognitive processes such as social categorization or stereotyping and the need for groups

to view themselves positively, result from this collective information processing (Brubaker,

Loveman, & Stamatov, 2004; Hogg, 2006). The central importance of ideologies, values,

attitudes, and behavior in the development of group cognitive architectures captured in the

following quote regarding the September 11, 2001 attacks:

In particular, the extremists actions have been regarded as an inevitable conse-
quence of their peculiar mix of Islam and conservative ideology, their lack of
respect for innocent human beings, and their hatred toward the United States.
In other words, the extremists behavior has been partly regarded as a product
of their ideologies, values, and attitudes. (Maio et al., 2006)

2. Cognitive Processes

Cognitive processes in social cognition leverage knowledge organized in the cog-

nitive structures (Howard & Renfrow, 2006). The social information processing system

mirrors the standard information processing paradigm with subtle differences. Salience

of a stimulus is known to be task dependent in visual information processing (Anderson,

2005). In the case of social information processing, the social meaning of percepts from

the environment define the social salience of the information. In a similar manner, percepts

regarding other groups that contradict expected behavior tend to be more socially salient

(Howard & Renfrow, 2006).

157

The social cognition view of cognitive inference is geared for the use of the in-

formation gathered by an individual or group to make some social judgment (Howard &

Renfrow, 2006). In a social context, we rely on prototypes of groups to make inferences

about groups or group members we encounter. The group prototype we follow in regard

to a given social entity also impacts the selective attention we allocate tof the individual

or group (Howard & Renfrow, 2006). During a meta-cognitive step individuals or groups

transform the perceived information using heuristic shortcuts as implied by the informa-

tion processing model from cognitive science. Group meta-cognition has been empirically

studied in the context of group problem solving, with the value of group meta-cognition

increasing with the difficulty of the problem (Iiskala, Vauras, Lehtinen, & Salonen, 2011;

Wilson, 2001).

Humans make decisions that tend to confirm their pre-existing belief, in spite of

new evidence (Howard & Renfrow, 2006). Using limited information people tend to make

causal inferences regarding the factors that produced a given outcome in a given situation,

assigning characteristics to individuals or groups, associated with situations they encounter.

Jones proposed that trait attributions resulted from the evaluation of observed situational

behavior and prior expectations regarding other groups influenced by social norms. Several

studies demonstrated that those viewed as being in positions of power had their behavior

negatively categorized more frequently than others (Howard & Renfrow, 2006).

3. Sentiment

The impact of emotion on social information processing has been documented in

a number of empirical studies (Jackson & Sullivan, 1989). Stets equates emotion and

sentiment in her treatment of experiences that result from the combined influences of the

biological, the cognitive, and the social and defines sentiment as “distinctly social in that

individuals learn through socialization with others the names of the internal sensations they

experience and the social norms regarding their appropriate expression (Stets, 2006). Stets,

referencing Thoits, cites four related elements that comprise an emotion: 1) situational

cues; 2) physiological changes; 3) visually expressive gestures; 4) the socially defined

158

label that describes the combination of the other three elements currently being experienced

(Stets, 2006). Stets attributes a list of contemporary primary emotions to Turner: assertion-

anger, aversion-fear, disappointment-sadness, and satisfaction-happy (Stets, 2006). These

contemporary views are founded on work with at the individual, identifying five common

emotions based on facial expressions, and work to map these primary emotions to the field

of sociology. In the sociological view, combinations of these primary emotions can lead to

secondary emotions, or social emotions.

Emotional intelligence and emotional competence both describe the role that emo-

tion plays in information processing. Emotional intelligence is described as the ability to

perceive and express emotion, to integrate emotion into reasoning, to understand emotion,

and to control or manage emotion (Stets, 2006). The biological view of emotion focuses

on emotions as expressions of internal feedback from the body, while the social structural

approach relates sentiment to changes in power and status. The cultural perspective traces

emotions to cultural norms, which provide information on how to feel in a given situation.

A difference in generated emotions and culturally expected emotions describes emotional

deviance in this paradigm. The symbolic interactionist framework relates emotion most

closely to internal processes within individuals. Affect control theory, one variant of this

paradigm, describes how emotions arise when internal feedback conflicts with the individ-

uals perceived identity in the situation (Stets, 2006). This is not dissimilar to the cultural

view.

4. Group Behavior and Deviance

Oakes suggested that group collective properties can explain behavior, supported

by Allison and Messick who provide an account of the attribution of opinions derived from

group decisions to individual members, even when collective decisions were not made

(Howard & Renfrow, 2006). Power relationships also influence the attributions of group

members and subsequent intergroup relationships. Attribution processes between groups

are shaped by historical, economic, and political contexts of intergroup relations and is

consistent with Fisher’s narrative paradigm. This favoring of closely related groups results

159

in a greater allocation of selective attention to those groups categorized as most like the

observing group, while relying on more basic schemas for those groups that are not as

relevant. One result of this difference in the level of detail is illustrated by the extreme

evaluations we tend to place on those groups with which we interact and attend to less

frequently (Howard & Renfrow, 2006). Visual traits often are used for categorization,

and when these traits occur in conjunction with a difference in resources the group with

more resources will usually be assigned more status. This categorization process leads

to the formation of group identities, which tend to be more relevant for those that are

disadvantaged than high status groups, consistent with social identify theory (Howard &

Renfrow, 2006). This is consistent with work on deviance, which uses the shared normative

expectations of groups as mechanism by which groups evaluate behaviors and world views

of individuals or other groups (Kaplan, 2006). Those that deviate from established norms

are described as doing so from motivated deviance, usually due to a lack of motivation to

adhere to social norms, or unmotivated deviance, usually in spite of the individuals efforts

to adhere (Kaplan, 2006). Groups define social norms, which eventually might become

legitimatized as laws of a country established by the dominant group. Motivations and

goals play an important role in the adherence of members of a group to established norms.

The use of cognitive architectures to represent group cognition within social simu-

lation has not been explored extensively in the literature, but the use of this type of informa-

tion processing framework at the group level seems reasonable given the social psychology

literature. The following section will describe the empirical performance of the cognitive

architecture previously described when embedded within the CG model.

D. APPLICATION OF THE REINFORCEMENT LEARNING AND A PRACTI-
CAL COGNITIVE ARCHITECTURE WITHIN THE CULTURAL GEOG-
RAPHY MODEL

This section describes the application of RL to the Cultural Geography model be-

ginning in 2010 with the incorporation of RL methods into the representation of the Theory

of Planned Behavior to drive action selection (S. Papadopoulos et al., 2013). Subsequently,

160

this research also developed an RL based representation of trust that was incorporated into

the agent-level decision regarding the selection of targets for communications (Pollock et

al., 2011). A methodology to develop scenarios from existing data was also provided and

demonstrated using open source data sources (McKaughan, 2011). Finally, a proof of prin-

ciple cognitive architecture based on the conceptual model described incorporating RL was

developed and implemented (J. K. Alt et al., 2011).

1. Initial Application of Reinforcement Learning within CG

Initially, RL was used to control the behavior of threat agent, to more clearly un-

derstand how RL might be applied within a complex social simulation. The scenario used

represents an area of Kandahar province in Afghanistan, with a civilian population of 350

agents, insurgent, host nation, and stabilizing forces, which communicate within a dynamic

social network. The population agents take actions to meet basic needs. Threat forces at-

tempt to reduce the satisfaction of the population on a set of issues related to stability, while

host nation and stabilizing forces seek to improve the populations satisfaction on this issue

set. Figure 48 shows the methodology used to develop the scenario and conduct analysis,

while Figure 49 shows a functional decomposition of a generic population agent.

Figure 42: Analysis methodology for close formed use case.

161

Figure 43: Population agent functional decomposition.

The initial implementation of RL within the CG model focused on enabling the

threat agents to use RL to control their action selection. There is one insurgent agent per

region each with four action choices:

• DoNothing: The agent performs no action.

• KillCivilServant: The agent makes an assassination attempt against a civil servant.

• IED: The agent plants an improvised explosive device (IED) against any target.

• IEDANSF: The agent plants an IED targeting the Afghan National Security Forces

(ANSF).

The problem is similar in nature to a noisy bandit problem with a reward function

providing the insurgents feedback following each action opportunity in the presence of a

variety of competing actions selected by the host nation and stabilizing forces. In this

simple case two agents are compared: an RL agent, Tal1, and a standard agent, Tal2. The

distribution of actions selected by each agent is shown in Figure ??. KillCivilServant

provides the best reward to the threat agent and we see that the threat agent does select this

action more often than the standard agent.

162

Figure 44: Distribution of threat actions.

This simple case illustrated that the RL agent responded to the dynamics of the

environment rather than performing its actions according to a predetermined script. This

approach served to reduce scenario and data development time and provide more realistic

results. Building on the initial implementation of this technique in guiding the behaviors

of insurgent actors, the next section describes the expansion of this research to explore

the applicability of the use of reinforcement learning in the representation of the theory of

planned behavior.

2. Representing Theory of Planned Behavior

Previous iterations of the CG model implemented the theory of planned behavior

through the use of Bayesian belief networks. This approach, which resulted in a separate

belief network for each agent, required extensive subject matter expert input and served to

greatly increase runtime during execution. In order to reduce the data requirements and to

163

link the agent responses more closely with the dynamics of the model, an implementation

of the theory of planned behavior that relied on RL was developed and incorporated into

the model. This resulted in reduced runtime and a reduced data development process and

model output that responded to the dynamics of the model. The research discussed here

has been accepted for journal publication (S. Papadopoulos et al., 2013).

The Theory of Planned Behavior (TPB) provides an empirically grounded concep-

tual model of the formation of human behavioral intention (Ajzen, 1991). The theory of

planned behavior states that behavioral intentions are formed by a combination of input

from perceived subjective norms toward the behavior, internal attitude toward the behavior,

and perceived behavioral control regarding the behavior. Subjective norm (SN) refers to

the opinions of those in the individuals peer group regarding the behavior. The components

SN are: the normative belief strength, nb, and motivation, m, to comply with the normative

belief summed across the relevant members of the individuals social network, n.

SN =

n∑
i

Nimi (42)

Attitude (A) refers to the individuals own beliefs regarding the behavior in question.

The attitude is expressed as the product of belief, b, and the outcome evaluation, e, an

evaluation of the value of the potential outcome (Ajzen, 1991).

A =

n∑
i

biei (43)

Perceived behavioral control (PBC) describes the individuals perception of the like-

lihood that they will succeed in the execution of the behavior given that they attempt it.

Control beliefs, cb, serve as the likelihood estimate, while perceived facilitation, pf, pro-

vides the value estimate (Ajzen, 1991).

PBC =

n∑
i

Cipi (44)

164

The model, as formulated by the (Ajzen, 1991), is an expected value model, with

a likelihood and payoff derived for each component. The linear sum of these components

provides a behavioral intention (BI) score for that individual for the behavior in question.

BI = A+ SN+ PBC (45)

In order to adapt the theory of planned behavior for use in the CG model we im-

plement the theory of planned behavior using a reinforcement learning based approach.

Perceived behavioral control (PBC) can be thought of as the discounted reward history for

the actions associated with the behavior of interest.

PBCa =
∑
i

λti−tuiH(ti > t), ∀a ∈ A (46)

The subjective norm (SN) is represented as the average activation levels of the k

nearest neighbors within the social network.

SNa =

∑k
i=1 PBCai

k
, ∀a ∈ A (47)

The attitude (A) toward the behavior is likely the most difficult to generalize, since

social simulations represent this in a variety of ways if at all. For the purposes of this

example, it can be thought of as the utility associated with the behavior, B, at time t, the

current simulation time.

Aa = UBt , ∀a ∈ A (48)

In the CG model, the attitude toward a given behavior is drawn from a set of belief

and issue stances or strengths that are updated dynamically over the course of a simulation

run. The formulation shown below then is equivalent to a multi-attribute utility function

that considers the agents internal state, A, the opinion of others, SN, and the external reward

or success history, PBC, associated with a behavioral action selection.

165

βa = w1Aa +w2SNa +w3PBCa, ∀a ∈ A (49)

s.t.

i=3∑
i=1

wi = 1.0 (50)

This formulation was used in support of current operations analysis of the Kandahar

province of Afghanistan and is the subject of an upcoming journal article (S. Papadopoulos

et al., 2013). Results of simple case study analysis verify that the RL code behaves as

predicted. In this case, the case study involved a small experiment that controlled the level

of water at each of the servers in a provinces. As the level of water was reduced in one

area, rather than simply continue to execute the same action despite a negative outcome,

as in previous versions of the model, the agents adapt their behavior and try alternatives,

eventually identifying which servers still have water. While this may sound simple, the use

of agents that actually respond to the dynamics of the environment greatly increased the

face validity of the model output. The use of RL also reduced the scenario construction

time and data requirements while reducing runtime over previous model versions.

3. Incorporation of a Cognitive Architecture

The cognitive architecture, implemented by Rolands and Associates, was incor-

porated into the CG model and used in support of the FY11 Irregular Warfare Tactical

Wargame (IW TWG). During the war-game the CG model is used in a human in the loop

fashion, with human players making action selections which become inputs to the model-

ing suite. The simulation runs for a weeks worth of game time and results from a single

run are provided back to the player. The action space for the population agents in this use

case is very small and the state space in this implementation was ill-defined. The code

and the cognitive architecture functioned as expected, controlling the level of information

provided to each agent through the percept mediator and allowing the agents to form a no-

tion of state and map states to actions. Agent’s that use the cognitive architecture would

also be well-suited for use as autonomous red or blue forces in a close loop setting or as

166

semi-autonomous red or blue forces in a war game. Should the population agents be pro-

vided a richer action space, they might warrant the use of more sophisticated autonomous

behavior. Note that the scenario configuration and definition of the reward signal must

be accomplished for each application of the CG model. The implementation served as the

centerpiece of the FY11 IW TWG facilitating the player stimulus regarding population out-

put which drove the conduct of the war-game. This effort was recognized with the Army

Modeling and Simulation Office Team Award in 2011.

Rigorous testing of the integrated code is ongoing at TRAC-MTRY and initial re-

sults verified that the code is functioning properly and that the scenario file was not prop-

erly configured in a number of respects in the previous iteration. The use of cognitive

architectures to represent goal driven behavior within simulation and the incorporation of

reinforcement learning to prevent overly brittle solutions continues to be an active area of

research.

E. CONCLUSIONS

In conclusion this chapter documented the development of a practical cognitive ar-

chitecture and the use of RL in the representation of human population agents within an

agent based social simulation. RL was first used to make decisions for threat forces in a

closed loop setting and later used to represent the theory of planned behavior to drive deci-

sion making for population agents in a close looped setting. These innovations were used

to support an Irregular Warfare Tactical Wargame (IW TWG) in 20120 and an analysis of

the population along the Pakistan-Afghanistan border. Finally, a version of the cognitive

architecture was incorporated into the CG model and used in support of IW TWG 2011,

which received a Army Modeling and Simulation award for excellence in analysis. Sce-

nario configuration proved to be challenging primarily due to scenario initialization files

and limited data availability and the use case. While CG was developed for use in close

form its use case migrated to a human in the loop war-game, but the design focus remained

on the close form case rather than the stimulation of human players within a game-based

167

setting. While the models, including the cognitive architecture, functioned as intended, the

signal provided to the players was noisy due to lack of calibration. This issue was identi-

fied in after action reviews and strategies to correct his have been implemented by the team

along with a refocus of model development to a human in the loop use case.

The use of RL techniques in this area in conjunction with a practical cognitive

architecture or other construct to maintain domain knowledge provides a conceptual model

for human behavior that has the potential to be validated and that represents the essential

elements of human information processing.

168

VI. CONCLUSION

This chapter provides a summary of the contributions of this dissertation and direc-

tions for future research in this area.

A. SUMMARY OF CONTRIBUTIONS

This research provided insights into the application of model-free reinforcement

learning algorithms within Department of Defense simulation models. The application of

these algorithms to several use cases was described:

• Human behavior representation.

• Assignment and scheduling of resources.

• Validation of reward structures within training simulations.

The research developed a novel reinforcement learning algorithm, Direct-Q Com-

putation, designed to speed reinforcement learning by directly addressing the temporal

credit assignment problem in reinforcement learning. This algorithm leverages properties

of maximum likelihood estimation to develop an estimator that minimize bias resulting in

faster learning in sequential decision making tasks with delayed reward when compared

with other model-free approaches.

1. Direct-Q Computation

The primary contribution of this research is the novel use of the exponentially

weighted average reward as an action-value estimator in reinforcement learning systems

in order to address the temporal credit assignment problem in reinforcement learning. This

relatively straightforward approach improves learning speed over dominant existing ap-

proaches in task environments with noisy and delayed reward signals and improves perfor-

mance in non-stationary environments, while reducing the number of parameters required

169

to be specified by the system designer from 3 to 2. Many real-world applications fall into

this category of problem and in these cases delays in learning or recovery can result in

control system failures and lost resources. The results provide the modeling and simula-

tion community with a method that speeds learning in these challenging cases, reducing

the time required to train autonomous software agents and the time required for agents to

adjust to changes in their environment. These performance results carry over into each of

the multiple modeling and simulation application areas examined in this research.

2. Enabling Adaptive Behavior in a Combat Simulation

A fourth major contribution of this research a methodology and application of rein-

forcement learning to represent human decision-making within a combat simulation. This

straight-forward approach provides an empirically developed conceptual model of human

decision making, important for eventual model validation, that facilitates dynamic decision

making and allows agents to learn from interaction with their environment. This approach

incorporates the novel use of reinforcement learning within hierarchical task networks, pro-

viding the potential to enable adaptive decision making within complex behaviors. This has

particular relevance for enabling agents that adapt to the behavior of an opposing force, as

human decision makers do, as opposed to relatively brittle scripted methods currently in

use.

3. Maximizing the Value of a UAV Schedule from a DES

RL algorithms provide an alternative approach to dynamic programming techniques

currently employed for scheduling and assignment of resources in TRAC’s assignment and

scheduling tool. This simulation is used to produce a feasible schedule for unmanned aerial

assets that maximizes a value function by correctly pairing platforms with mission de-

mands in the context of a combat scenario. The current approach employs a linear program

that maximizes value over a finite-time horizon, but fails to provide a feasible schedule

that maximizes value in cases where high value targets appear beyond the time horizon or

where high value emergent targets become available following the initial allocation. Fur-

170

ther, this approach fails to learn to recognize the cues leading to these situations, as a human

decision maker would over-time, and makes these mistakes consistently resulting in fea-

sible, but non-value maximizing schedules. The value of the feasible schedule produced

in different combat simulations for a given mix of unmanned platforms is used to inform

acquisition decisions regarding unmanned assets, so the current tools limitations directly

impact the representation of the value of a given mix to senior decision makers. Since

the difference in the value lost to these cases varies across mixes, the analyst cannot know

how this systematic issue effects results in the aggregate.This research demonstrates the

use of reinforcement learning to address these cases and an approach that relaxes the strict

requirement for fully observable demands currently imposed on the simulation.

4. Verification of Reward Structure in Training Simulation

A major contribution of this research is a novel methodology and example applica-

tion of the use of reinforcement learning as a means of verifying the reward structure of a

training simulation. The reward structure in a training simulation directly impacts trainee

learning-time and outcomes. A weak reward signal will result in slower learning and a re-

ward signal that rewards trainee actions that are not consistent with learning objectives will

result in learning the trainee learning the wrong objectives. This research demonstrates the

use of reinforcement learning to examine the reward structure and produce an example of

the learned behavior, or policy, that can provide the training simulation designer feedback

on the student behaviors rewarded by the training simulation prior to the simulation ever

touching student hands, allowing the developer the opportunity to identify and correct de-

ficiencies prior to fielding. This research contributes a repeatable methodology for the use

of RL in this use case.

5. Practical Cognitive Architecture

RL algorithms used in conjunction with cognitive architectures provide a traceable

means enabling autonomous behavior while representing human decision making in DoD

simulation models. The use of these methods within social simulations, as suggested by the

171

NRC and others, provided increased transparency when implemented within the CG model

and significantly reduced data development and improved run-time over previous methods,

while producing similar results. A fifth contribution of this research is the development

and application of a novel practical cognitive architecture that facilitates the representation

of human information processing and the inclusion of domain knowledge in a structured

manner that enables the selective use of goal-driven reinforcement learning to represent

human decision making. The cognitive architecture provides an understandable framework

to incorporate the effects of perception, working memory, and dynamic goal-setting within

simulation agents. This is particularly relevant for analysis topics related to the value of

information or the impact of networked sensors. The cognitive architecture also has rele-

vance to the representation of civilian behavior in conflict areas, where the analysis focuses

on the beliefs and interests of a population and the cognitive architecture provides a or-

ganizing construct. This contribution was incorporated into a social simulation used to

facilitate war-games that received a 2011 Army Modeling and Simulation Office award for

excellence in analysis.

B. FUTURE RESEARCH

Future research could extend the results of this dissertation by incorporating tech-

niques to dynamically adjust the ratio between exploration and exploitation and by integrat-

ing the cognitive architecture within other simulation models, such as COMBATXXI. Bal-

ancing exploration and exploitation is critical to the performance of reinforcement learning

systems and is a problem encountered across multiple disciplines. Future work in this area

is vitally important to both improving agent performance and to understanding how humans

accomplish this challenging task.

Perception of state is essential to decision-making and learning, but the state rep-

resentation must remain as sparse as possible to speed learning in reinforcement learning

systems. Developing methodologies to identify the key components of the environmental

state in different decision situations is key to understanding how decision-makers reason in

172

uncertain environments and the information required to represent at the agent-level in order

to facilitate more realistic representations of human behavior in DoD simulation models.

The application of reinforcement learning methods to facilitate sequential design of

experiments is an interesting application area not explored in this research, but of interest

to the modeling and simulation community. In this research we discuss the application of

reinforcement learning to one aspect of training simulation, but a separate application area

could involve the use of reinforcement learning agents to drive the pace of instruction based

on feedback from the trainee, serving as intelligent tutors.

In this research we have sought to demonstrate the broad applicability of reinforce-

ment learning within DoD models and simulations, but there is still much work to be done

and to realize the full potential of these simple yet powerful techniques within defense

modeling and simulation applications.

173

THIS PAGE INTENTIONALLY LEFT BLANK

174

APPENDIX A: FIRST-VISIT AND EVERY-VISIT MONTE-CARLO

Algorithm 11 First-visit MC (Szepesvari, 2010)
1: FirstVisitMC(τ, V, n)

2: Parameters: τ = (s0, r1, ..., rT , sT) is a trajectory with sT being an absorbing state, n

is the number of times the long-term value estimate, V , was previously updated, γ is

the discount rate, α is the learning rate, and t is the current trial.

3: sum←0

4: for t = 0 to T − 1 do

5: sum← sum+ γtrt+1

6: end for

7: V ← V + 1
n
(sum− V)

8: return V

Algorithm 12 Every-visit MC (Szepesvari, 2010)
1: EveryVisitMC(s0, r1, s1, r2, ..., sT−1, rT , V)

2: Parameters: st is the state at turn t, rt+1 is the reward associated with the tth transition,

T is the length of the episode, V is the array storing the current value function estimate,

γ is the discount rate, α is the learning rate.

3: sum← 0

4: for t← T − 1 down to 0 do

5: sum← trt+1 + γ sum

6: δ(st)← sum

7: V(st)← V(st) + α(δ(st) − V(St))

8: end for

9: return V

175

Algorithm 13 TD(λ) (Szepesvari, 2010; Sutton & Barto, 1998)
1: TD(λ)

2: Parameters: s, the current state; V(s), current value estimate of current state; e(s),

current eligibility to receive credit of current state; γ, discount rate; α, learning rate; λ,

decay rate.

3: Initialize π (ie. ε− greedy, Boltzmann).

4: Initialize V(s) arbitrarily, e(s) = 0 for all (s).

5: Return a using π(s).

6: Take action a, observe reward r, and next state, s ′.

7: δ← r+ γV(s ′) − V(s).

8: e(s)← e(s) + 1.

9: for For all s: do

10: V(s)← V(s) + αδe(s)

11: e(s)← γλe(s)

12: end for

13: s← s ′

14: Increment t. If t 6 T , go to line 3.

176

APPENDIX B: COMPARISON OF ε-GREEDY AND BOLTZMANN

EXPLORATION

It is useful to provide a more detailed explanation ε-greedy and Boltzmann explo-

ration policies in order understand the true nature of their impact on RL performance when

coupled with an action-value estimator. The choice of exploration policy is a significant

factor in the performance of the overall learning system by all metrics, which is intuitive

since the exploration policy essentially controls the sampling strategy of the learning sys-

tem. Assume two independent learning agents are operating in an MDP as defined previ-

ously. For simplicity let it be a single-state MPD, S = 〈s0〉 , with a finite action set consist-

ing of only two actions,A = 〈a0, a1〉, and that both agents are using the same action-value

estimation algorithm and are provided with exactly the same estimates, Q(s, a). Assume

one agent employs an epsilon-greedy policy, with fixed ε , and the other agent employs a

Boltzmann exploration policy, with fixed τ. Let the true value of each action be q0 and q1

respectively and let the true value plus estimation error be,

Q(s0, a0) = q0 + e0,

Q(s0, a1) = q1 + e1 (51)

, for each action choice with q0 > q1 . To simplify notation for this single state case we

will refer to Q(s0, a0) and Q(s0, a1) as Q0 and Q1.

Case 1. Let the estimation error associated with each estimate be equal, e0 = e1

and of the same sign. In this case since the estimation errors are equal we see that Q0 >

Q1 . Then we see that epsilon-greedy will always choose Q0 with probability ε and Q1

with probability 1 − ε. So the expected number of exploratory actions is εT , where T is

the number of trials in the episode. In the case of the Boltzmann exploration policy the

177

probability of selecting each action is given by,

P(π(s0) = a0) =
exp Q0

τ∑
a exp Qa

τ

=
exp q0+e0

τ∑
a exp qa+ea

τ

P(π(s0) = a1) =
exp Q1

τ∑
a exp Qa

τ

=
exp q1+e1

τ∑
a exp qa+ea

τ

(52)

Since we know that q0 > q1 and that e0 = e1 we see that, q0+e0
τ

> q1+e1
τ

for fixed τ ,

but this does not imply that P(π(s0) = a0) > Pπ(s1) = a1) since we have not specified

enough information regarding τ. Dropping the error terms since they are equal, we know

that the probability of selecting either action will be equal when,

exp
q0

τ
= exp

q1

τ
q0

τ
=
q1

τ
(53)

q0 − q1
τ

= 0 (54)

So we see that since the numerator in this case is a positive constant, since q0 > q1, that the

only way to satisfy the condition for equal probabilities is as the denominator goes toward

infinity.

lim
τ→∞

q0 − q1
τ

→ 0 (55)

The size of τ required for this condition to hold for our case depends on the magnitude of

the interval q0 − q1 . Recall that for the exponential function,

lim
x→0

exp x→ 1 (56)

178

and that for our case we see that for sufficiently large that,

P(π(s0) = a0) P(π(s0) = a1) (57)

and the probability of taking an exploratory action in general is,

exp q1
τ∑

a exp qa
τ

P(π(s0) = a1) =
exp q1

τ

exp q0
τ
+ exp q1

τ

(58)

and that the probability of taking an exploratory action with the Boltzmann policy and the

epsilon-greedy policy will be the same when,

ε =
exp q1

τ

exp q0
τ
+ exp q1

τ

(59)

which we can restate as,

ε =
1

1+ exp q0
τ
− q1

τ

(60)

let q0 − q1 = δq , and we can say,

ε =
1

1+ exp δq
τ

(61)

ε

(
1+ exp

δq

τ

)
= 1

ε exp
δq

τ
= 1− ε

τ =
δq

ln(1− ε) − ln(ε)

This defines the temperature of the Boltzmann strategy in terms of epsilon and the differ-

ence between the action values for the case of equal errors in the estimate, both in the same

direction. Note that this definition fails for the case where 1 − ε = ε, and that ε ∈ (0, 1) .

179

As ε → 1, the denominator goes toward negative infinity and as ε → 0, the denominator

grows toward positive infinity, and in fact the function is symmetric about the fixed point

at ε = 0.5. With fixed numerator this yields a symmetric function for the temperature, pro-

ducing positive temperature parameter values for low exploration probabilities and negative

values when the probability of exploring is greater than 0.5. Setting the temperature param-

eter using this formulation would ensure that the probability of taking an exploratory action

using a Boltzmann policy was equal to the probability of taking an exploratory action using

the epsilon greedy policy and the expected number of exploratory actions using a Boltz-

mann strategy with its temperature parameter set in accordance with the formula above

would equal εT making it equivalent to the epsilon-greedy case. The insight this provides

us is that the difference between the action-value estimates is important for understanding

the behavior of the Boltzmann policy as it is typically employed and the importance to the

Boltzmann policy of being coupled with value estimation algorithms that minimize error

or at least treat it in a systematic manner. We see from,

ε =
1

1+ exp δq
τ

(62)

that as δq → ∞ that the probability of choosing the exploratory action goes toward zero

given a fixed temperature parameter. This demonstrates the importance of the accuracy

of the value estimator in the behavior of Boltzmann exploration and we see that when the

difference between the value of the best action and the next best action are small that the

probability of choosing an exploratory action will be relatively higher.

Case 2. Let the estimation errors be unequal such that, e0 < e1 . Recall that

q0 > q1 shows the relationship between the true values of the actions for our single state

180

MDP and that the value of the state action pair as perceived by the agent is,

Q(s0, a0) = q0 + e0

Q(s0, a1) = q1 + e1 (63)

(64)

We begin again with the epsilon-greedy case, which will choose the action with the maxi-

mum perceived value with probability 1 − ε. In order for the epsilon approach to choose

the correct action, the values must satisfy,

q0 + e0 > q1 + e1

q0 − q1 > e1 − e0 (65)
q0 − q1
e1 − e0

> 1 (66)

δq

δe
> 1 (67)

,so that the difference between the true values are greater than the difference between the

errors associated with the estimates. The effect on the Boltzmann strategy is seen on the

probability of choosing the exploratory action below,

P(π(s0) = a1) =
exp Q1

τ∑
a exp Qa

τ

=
exp q1+e1

τ∑
a exp qa+ea

τ

(68)

and from our previous case we saw that this could be simplified to,

ε =
1

1+ exp q0
τ
− q1

τ

(69)

181

and that,

δ1 = (q0 − q1) − +(e0 − e1) (70)

Since e0 < e1 and q0 > q1 for this case, we see that the error term is negative and serves to

reduce the magnitude of δq , which has the effect of increasing the likelihood of exploration

since the difference between the two estimates is reduced for fixed temperature. Depending

on the size of the error this could cause the exploration policy to take more exploratory

steps, despite an accurate estimate of the better action, to improve its estimate, reducing

overall system performance. We see then that any error in action-value estimation that

serves to contract δq will induce exploratory behavior, while error that serves to increase

this interval will induce more greedy behavior. Note that this case is often encountered in

practice since it is common that the best action will be sampled more often resulting in a

lower approximation error than actions sampled less often.

182

APPENDIX C: BAYESIAN OPTIMAL POLICY FOR N-ARM

BANDIT

The total regret and regret per turn have been used to gage the performance of

learning algorithms in the bandit problem previously. They make use of the expected utility

of choosing the best alternative at each turn in comparison to the expected utility of the

chosen path. As a means of gaining further insight into the specific problem of when to

explore we expand the state tree for the 2-arm bandit problem and solve for the sequence

of choices that lead to the best solution out to depth 10. The result is a set of nodes whose

state is a tuple consisting of 〈na, ka, nb, kb〉, where n is the number of times that an arm,

a or b, has been chosen, and k is the number of times the arm has paid off. The first node

in the tree then is the tuple 〈0, 0, 0, 0〉. Children are added to the parent nodes reflecting all

states that are possible to reach from that node branching by a factor of four at each node

like,

〈na+1, ka, nb, kb〉, 〈na+1, ka+1, nb, kb〉, 〈na, ka, nb+1, kb〉, 〈na, ka, nb+1, kb+1〉

(71)

The probability of visiting a state from the current state is calculated using the

probability of success of each arm and a particular set of hyper-parameters, (α,β,w), set

on initialization. The hyper-parameters are used to determine the probability of visiting any

node, so the probability of transitioning from the root node to the child state na = 1, ka =

0, nb = 0, kb = 0 is the probability of choosing A, w initially, time (1−α), the probability

of not receiving a payoff after choosing A. The expected utility of each node is determined

by either summing up the k hits for the parent node or determining the expected utility of the

child nodes with the maximum expected utility of the child becoming the expected utility

of the parent. The result is a tree that is completely expanded out to the specified depth with

the expected utilities then rolled back up to the root node and the optimal choices of lever

183

identified at each depth. The resulting policy is harvested with an additional parameter

added to the tuple reflecting the optimal choice at each state, 〈na, ka, nb, kb, c〉.

Using this state information we can determine the points on the optimal path at

which an exploratory action is taken from the perspective of an algorithm that does not

know the underlying distributions of the arms, but is only relying on the observations con-

tained in the original form of the tuple in order to learn the hyper-parameters. An ex-

ploratory action is defined as one in which the optimal choice, c, from a state transitions to

the arm with the lower probability of success, min(pa, pb), where,

pa =
ka

na
andpb =

kb

nb
(72)

,∀na, nb > 0 and 0 otherwise.This approach provides the full set of nodes that belong to

the optimal policy, o ∈ P, and the set of nodes that belong to the exploratory set, e ∈ E,

that are also members of the set of nodes in the optimal policy for a given λ, α, β out to the

specified depth.

Using this empirical data it is possible to empirically determine a policy, f(na, ka, nb, kb),

to determine when it is optimal to explore. In order for this policy to be general and useful

when the underlying distribution is not known requires that the policy be based on empiri-

cal data drawn from multiple combinations of λ, α, β . The added benefit of this approach,

and the original motivation for the work, is that a tight bound on the expected discounted

utility is produced that can then be used for comparison to empirical results using combi-

nations of action-value functions and exploration strategies. Initial results of this approach

applied to four combinations of α and β, (31
64
, 33
64
), (1

8
, 7
8
), (15

64
, 17
64
), (1

8
, 3
8
), across a range

of λ, {0.1, 0.2, ..., 1.0}. This resulted in a set P consisting of 818 nodes and a set E consist-

ing of 128 nodes, with w=0.5. No differences in optimal policy membership were observed

as a result of variations in λ for the same distribution. Differences in optimal policy mem-

bership were observed between combinations of α and β, with the differences based on the

magnitude of α − β. The optimal choice of arm for all states when priors are known is

obtained by updating the prior probability based on current observations.

184

P(α,β|ka, kb)P(ka, kb) = P(ka, kb|, β)P(α,β) (73)

P(α,β|ka, kb) ∝ P(ka, kb|, β)P(α,β) (74)

and if P(α,β) = P(β,α), then,

P(α,β|ka, kb) ∝ P(ka, kb|, β) (75)

and,

P(α,β) ∝
(
na

ka

)
αka(1− α)na−ka

(
nb

kb

)
βkb(a− β)nb−kb (76)

P(β,α) ∝
(
na

ka

)
βka(1− β)na−ka

(
nb

kb

)
αkb(a− α)nb−kb (77)

If, for arms with equal rewards, we assume that one arm is always preferable, β −

α > 0, then the problem is to determine the perceived location of the best arm, β. So when,

P(α,β|ka, kb) < P(β,α|ka, kb), chooseA (78)

P(α,β|ka, kb) > P(β,α|ka, kb), chooseB (79)

P(α,β|ka, kb) = P(β,α|ka, kb), chooseA (80)

Using these rules we correctly select the choice made at each of the nodes in our

empirical set P. Using this information we can compare the decisions made by reinforce-

ment learning algorithms to the optimal policy. This result provides us with a means of

identifying the best arm out of the k arms when the priors are known. When the priors

are unknown we need only know that there exists an arm, k∗, such that its probability of

success, α∗k, is greater than the probability of success of all other arms, α∗k > αk. The

probability of the best arm being located in each of the k positions and the choice is the

kth location with the highest probability, with arbitrary tie breaking. An examination of

the member nodes of E results in observations useful to characterize the optimal time to

185

explore, remembering that the decision to explore is the result of an update that resulted in

a false belief in the location of the optimal arm.

186

APPENDIX D: ANALYSIS OF DQ-C AND TD(λ)

Relating DQ-C to TD(λ)

TD(λ) serves as a foundational method bridging the gap between MC and TD tech-

niques through the use of e(s) to estimate V(s) (Sutton & Barto, 1998). MC methods use

the full sample return as the estimate,

RMCst =

L−1∑
i=0

γirt+i, (81)

where L is the number of state transitions in after time t, while TD methods estimate the

return by using the previous estimate,

RTDst = rt + V(st+1), (82)

where RTDst is the estimate from st and rt is the reward received going from st to st+1.

These two estimates are examples of the more generalized n-step return, where for n > 1,

R(n)
st

= rt + γrt+1 + γ
2rt+2 +

...+ γn−1rt+n−1 + γ
nV(st+n), (83)

which uses the observations ofn transitions and the previous estimate provided by the value

function. TD(λ) uses all n-step returns simultaneously by incorporating a new parameter,

λ ∈ [0, 1] to provide the λ-return,

Rλst = (1− λ)

∞∑
n=0

λnR(n+1)
st

. (84)

187

The λ-return algorithm uses the λ-return to determine the increment to V(st) for each step,

V(st)← V(st) + α[R
λ
t − Vt(st)], (85)

with the update only occurring to s = st.

Pausing here we can see that Uj(s, a) from DQ-C most closely compares to RMCst ,

differing in the manner in which point rewards are accrued, with DQ-C crediting each (s, a)

pair with all future point rewards, indexing the sum on the number of point rewards, k,

while RMCst credits only s and indexes on the number of state transitions in the episode.The

two approaches also differ in the manner in which γ is decayed, using the time between the

visit to a given (s, a) in DQ-C versus the transition index in TD(λ).

Uj(s, a) =

k∑
i=1

riγ
ti−tjH(ti < tj),

RMCst =

L−1∑
i=0

γirt+i, (86)

Uj(s, a) clearly contrasts with RTDst , which bootstraps off its previous estimate. Since

this forms the basis of R(n+1)
st which lies at the heart of the λ-return we see that DQ-C

is distinctly different than the ”forward view” of TD(λ). The manner in which Q(s, a) is

calculated in DQ-C differs from the λ-return as well, with the index of the summation in

DQ-C being tied to visits to the (s, a) rather than steps forward in time from a given state.

The ”backward view” of TD(λ) is typically used in implementation and increments

e(s) for each visit to a (s), see Algorithm 14. By contrast, DQ-C maintains an estimate

for the value of each visit to a (s, a), directly assigning credit to each visit as point rewards

are obtained in order to update the expected utility obtained from each visit.

188

Algorithm 14 TD(λ)
1: Initialize π (ie. ε− greedy, β).

2: Initialize V(s) arbitrarily, e(s) = 0 for all (s).

3: Return a using π(s).

4: Take action a, observe reward r, and next state, s ′.

5: δ← r+ γV(s ′) − V(s).

6: e(s)← e(s) + 1.

7: for For all s: do

8: V(s)← V(s) + αδe(s)

9: e(s)← γλe(s)

10: end for

11: s← s ′

12: Increment t. If t 6 T , go to line 3.

TD(λ) then makes use of a learning rate parameter to incrementally learn from the

one-step return standard to TD methods, while DQ-C recursively updates either a sample

or exponentially weighted average. TD(λ) requires three parameters: a discount factor, γ,

a learning rate, α, and a parameter to control the length of the backup, λ.

DQ-C requires only the use of a discount factor, γ, in the sample average case, and

adds a learning rate or base weight, α, that serves a similar purpose as λ in TD(λ) in the

exponentially weighted case. Several potential strategies are yet to be explored to elimi-

nate the need for α in the exponential version of DQ-C. The consideration of time in the

application of weights in the exponentially weighted version of the algorithm also serves

to distinguish DQ-C from other approaches based on TD(λ), such as Q(λ) and SARSA(λ).

The next section examines the convergence properties of DQ-C.

Analysis of DQ-C

In this section we will analyze the convergence properties of DQ-C in a stationary

episodic task environment.

189

Definition 1. Let {an} be a sequence of real numbers. We say that {an} is Cauchy con-

vergent provided for every ε > 0, there is an N(ε) such that, n > N(ε) and m > N(ε)

implies |an − am| <ε.

Lemma 1. Given an episodic task environment, a stochastic π, and an infinite number of

trials, t → ∞, the number of visits, n, to each (s, a) will go to ∞ as will the number of k

point rewards.

Assume DQ-C is paired with a stochastic π. This guarantees that as t → ∞,

n → ∞ for each (s, a) and since R(s) assigns point rewards based on visits to s we can

see that k → ∞ as well. We also know by that γti−tj forms a geometric series since

ti > tj∀i ∈ k for each j, and that as k→∞ the geometric series γti−tj converges to 0.

Theorem 1. The estimate of the utility of each jth visit to a (s, a), Uj(k), converges as

t→∞.

Assuming constant non-negative rewards, we see that |Uj(i−1)−Uj(i)| > |Uj(i)−

Uj(i + 1)|∀i ∈ k and that as k → ∞, |Uj(k) − Uj(k + 1)| → 0, since with fixed tj,

tk+1 − tj → ∞ and γ∞ → 0, and we can see that there exists a N(ε) such that |Uj(i +

n) −Uj(i+m)| < ε, ∀n,m > N(ε).

Theorem 2. The estimate of the sample average of each (s, a), Q(n, k), converges to the

true mean value of a visit to (s, a), µ, as t→∞.

Q(n, k) can be viewed as the sample mean of a convergent series of partial sums

by examining the discussion of Uj(k) and we can leverage the convergent properties of

Uj(k) to show that the right hand side of the one-step update of Q(n, k) goes to zero

as n, k → ∞, since limn,k→∞ γtk+1−tj = 0, and since limn→∞ n
n+1

= 1 we see that

limn,k→∞ n
n+1

Q(n, k) = Q(n, k).

Theorem 3. The estimate of the exponentially weighted average of each (s, a), Q(n, k),

converges to the recency weighted mean of a visit to (s, a), µ(n, k, t), as t, n, k→∞.

190

The exponentially weighted average provides an estimate of the current value of a

(s, a) by ensuring that as the t→∞ that with fixed tj, (t− tj)→∞ and that the weight,

αt−tj → 0, for 0 < α < 1. We can see that since the weights are normalized that as

initial weights tend toward 0, greater emphasis is placed on new observations and that for

|Q(n, k, t) −Q(n, k, t + 1)| < ε as t → ∞ for fixed n, k and that αt−tn < αt−tn+1∀j ∈

n. We see that as the interval t − tn → ∞ that the estimate converges to the n + 1th

observation.

lim
t,n,k→∞Q(n, k, t) =

αtS(n, k) + αt−tn+1Un+1(k)

αtC(n) + αt−tn+1

=
αt−tn+1Un+1(k)

αt−tn+1
= Un+1(k) (87)

191

THIS PAGE INTENTIONALLY LEFT BLANK

192

APPENDIX E: PTSP MAPS

Map sets for the Physical Traveling Salesman Problem.

Figure 45: Map 2 for physical traveling salesman problem.

193

Figure 46: Map 3 for physical traveling salesman problem.

194

Figure 47: Map 4 for physical traveling salesman problem.

195

Figure 48: Map 5 for physical traveling salesman problem.

196

Figure 49: Map 6 for physical traveling salesman problem.

197

Figure 50: Map 7 for physical traveling salesman problem.

198

Figure 51: Map 8 for physical traveling salesman problem.

199

Figure 52: Map 9 for physical traveling salesman problem.

200

Figure 53: Map 10 for physical traveling salesman problem.

201

THIS PAGE INTENTIONALLY LEFT BLANK

202

APPENDIX F: FULL ASC-U FORMULATION

ASC-U formulates this problem as a finite state and finite time horizon dynamic

program with the following indices (Ahner et al., 2006),

• t, current time, t = 0, 1, ...T , where T maximum simulation time,

• i, ith UAV, i ∈ UAV , where UAV is the set of UAV,

• j, jth GCS, j ∈ GCS, where GCS is the set of GCS,

• k, kth LRS, k ∈ LRS, where LRS is the set of LRS,

• l, lth Mission, l ∈Msn, whereMsn is the set of Missions,

and the following additional terms,

• τ, the time horizon over which the system is optimized,

• 〈x, y〉t, the cartesian coordinate of an object at t,

• tUAViflight, time of flight of ith UAV at t

• −→ut, a decision vector that acts on the system selected from the finite set U at each t,

• −→st , the vector describing the state of the system at t, where −→st ∈ S,

• −−→st+τ, the state of the system at the end of the next time horizon,

used in the dynamic programming formulation where the update to −−→st+τ is further

defined,

−−→st+τ = f1
(−→st ,−→ut, τ) (88)

and −→st is further defined,

203

−→st ≡
(
sUAVit , s

GCSj
t , sLRSkt , sMsnlt

)
,

−−−→
sUAVit ≡

(
〈x, y〉UAVit , tUAViflight, t

UAVi
recovery, A

UAVi
t , sensorUAVit , typeUAVi

)
,

−−−→
s
GCSj
t ≡

(
〈x, y〉GCSjt , capacity

GCSj
t , typeGCSj

)
,

−−−→
sLRSkt ≡

(
〈x, y〉LRSkt , capacityLRSkt , typeLRSk

)
,

−−−→
sMsnlt ≡

(
〈x, y〉Msnlt , sensorm

)
,

(89)

where,

sensorm ≡
(
sensorTypem, 〈topen, tendOpen〉, vrate

)
, (90)

describes the seor requirement of each mission area.

In the dynamic programming formulation the cost-to-go or future value function at

time t is used to determine the optimal policy, here mapping π(s)→ U,

Jt(st) = max−→ut
Ct(st,

−→ut) + Jt+τ(st+τ), (91)

for t = 0...T − τf, where τf is the time difference from the end of the time horizon

and the last applied control. Since for the deterministic case all mission demands are known

in advance the optimal control policy could be obtained by,

ut = max−→ut
Ct(st,

−→ut) + Jt+τ(st+τ), (92)

The problem as addressed in ASC-U is formulated using the following indices

(Ahner et al., 2006),

204

• t, current time, t = 0, 1, ...T , where T maximum simulation time,

• i, ith UAV, i ∈ UAV , where UAV is the set of UAV,

• j, jth GCS, j ∈ GCS, where GCS is the set of GCS,

• k, kth LRS, k ∈ LRS, where LRS is the set of LRS,

• l, lth Mission, l ∈Msn, whereMsn is the set of Missions,

and the following sets,

• A, set of all mission areas with active missions during the optimization time hori-

zon,

• L, set of all active LRS,

• G, set of all GCS,

• GL, set of all GCS assigned to LRS L,

• Cg, number of UAV GCS g is capable of controlling,

• It, sub-set of UAV at LRS l ∈ L, defined by min
(

ready UAV, launch limit, airborne

UAV,
∑
GL
Cgm assigned UAV to GCS

)
• Jl, subset of all sensor packages located at LRS, l ∈ L,

• Yga = 1, if mission area a assigned to GCS g, 0 otherwise,

• cja, reward for a UAV with sensor package j being assigned to mission area a from

the soonest possible arrival time of the UAV at a to the end of the time horizon,

t+ δti, for UAVi,

• Xja = 1, if a UAV with sensor package j is assigned to a and 0 otherwise.

205

The formulation for this revised problem seeks to maximize the value of the mission

areas covered subject to four constraints,

max
∑
ja

cjaXja (93)

subject to, ∑
j

Xja 6 1∀a ∈ A (94)

, ensures only a single UAV to a mission area,

∑
a

Xja 6 1∀i ∈ I (95)

, ensures only a single mission area is assigned to each UAV,

∑
ja

YgaXja + g∀g ∈ G (96)

, constrains the number of UAV’s a single GCS can control and,

∑
j∈Jla

Xja 6 |Il|∀l ∈ L (97)

, ensures that the sensors assigned to an area does not exceed the capacity of the assigned

UAVs.

The assignment of mission areas to GCS is determined by a heuristic, see Algo-

rithm 15, as is the determination of the reward, see Algorithms 16. This reformulation

proved successful in application and was successfully applied to several real-world studies

by both TRAC and MCCDC-OAD. We discuss the application of RL to this problem in the

following section.

206

Algorithm 15 Assignment of Mission Areas to GCS.
1: for each LRS and mission area a do

2: Na ≡ the number of GCSg that are in range of UAV assigned to a.

3: end for

4: for each mission area a do

5: sort by Na.

6: for each GCSg do

7: sort by
∑
a Yga

8: If a is in range of g, let Yga = 1

9: end for

Algorithm 16 Assignment of value for completed missions.
1: for each UAV i do

2: for each mission area a do

3: t0 = first time after the earliest arrival time that UAV i can gain value by being

assigned to mission area a

4: t1 = min
(
the latest time UAV i can remain at mission area a, t+ δti, for UAV i

)
5: Ka = the set of all missions located at mission area a

6: Vi,k,t0,t1 = the value that UAV i gains from mission k by being at mission area a

7: Calculate, cia =
∑
ka
Vi,k,to,t1

8: end for

9: end for

207

THIS PAGE INTENTIONALLY LEFT BLANK

208

APPENDIX G: LEARNED STATE-ACTION VALUES FOR

URBANSIM.

Table 20: Learned policy for Battalion Commander by turn for 15 turn UrbanSim game

using DQ-C.

STRATEGY 1 2 3 4 5 6 7 8

SKC 6.6E-316 6.6E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

SKH 2.3E+02 2.4E+02 2.4E+02 2.4E+02 2.4E+02 2.4E+02 2.4E+02 2.5E+02

SKB 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

SNC 2.4E+02 2.4E+02 2.3E+02 2.3E+02 2.4E+02 2.4E+02 2.4E+02 2.4E+02

SNH 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

SNB 2.3E+02 2.6E+02 2.3E+02 2.4E+02 2.3E+02 2.4E+02 2.4E+02 2.5E+02

MKC 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

MKH 2.6E+02 2.3E+02 2.6E+02 2.4E+02 2.4E+02 2.4E+02 2.4E+02 2.3E+02

MKB 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

MNC 2.4E+02 2.4E+02 2.4E+02 2.6E+02 2.3E+02 2.4E+02 2.4E+02 2.4E+02

MNH 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

MNB 0.0E+00 2.4E+02 2.3E+02 2.3E+02 2.4E+02 2.4E+02 2.4E+02 2.4E+02

9 10 11 12 13 14 15

SKC 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

SKH 2.4E+02 2.5E+02 2.5E+02 2.6E+02 2.5E+02 2.6E+02 2.6E+02

SKB 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

SNC 2.5E+02 2.5E+02 2.6E+02 2.6E+02 2.6E+02 2.6E+02 3.0E+02

SNH 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

SNB 2.4E+02 2.5E+02 2.6E+02 2.9E+02 2.5E+02 2.6E+02 2.6E+02

MKC 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

MKH 2.5E+02 2.4E+02 2.9E+02 2.6E+02 2.6E+02 2.6E+02 2.6E+02

MKB 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

MNC 2.5E+02 2.8E+02 2.5E+02 2.6E+02 2.6E+02 2.6E+02 2.6E+02

MNH 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

MNB 2.5E+02 2.5E+02 2.5E+02 2.5E+02 2.6E+02 0.0E+00 2.6E+02

209

Table 21: Learned policy for CA unit by turn for 15 turn UrbanSim game using DQ-C.

STRATEGY 1 2 3 4 5 6 7 8

SKC 6.6E-316 6.6E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

SKH 2.4E+02 2.3E+02 2.4E+02 2.3E+02 2.3E+02 2.4E+02 2.4E+02 2.5E+02

SKB 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

SNC 2.6E+02 2.4E+02 2.3E+02 2.4E+02 2.3E+02 2.4E+02 2.7E+02 2.5E+02

SNH 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

SNB 2.4E+02 2.4E+02 2.3E+02 2.3E+02 2.4E+02 2.4E+02 2.4E+02 2.4E+02

MKC 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

MKH 2.3E+02 2.6E+02 2.6E+02 2.4E+02 2.3E+02 2.4E+02 2.3E+02 2.4E+02

MKB 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

MNC 2.3E+02 2.4E+02 0.0E+00 2.4E+02 2.4E+02 2.3E+02 2.4E+02 2.4E+02

MNH 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

MNB 2.4E+02 2.4E+02 2.4E+02 2.3E+02 2.4E+02 2.4E+02 0.0E+00 2.4E+02

9 10 11 12 13 14 15

SKC 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

SKH 2.5E+02 2.8E+02 2.6E+02 2.6E+02 0.0E+00 2.7E+02 2.6E+02

SKB 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

SNC 2.4E+02 2.5E+02 2.5E+02 2.6E+02 2.6E+02 2.6E+02 2.7E+02

SNH 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

SNB 2.4E+02 2.5E+02 2.6E+02 2.6E+02 2.6E+02 2.6E+02 2.6E+02

MKC 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

MKH 2.4E+02 2.5E+02 2.6E+02 2.6E+02 2.5E+02 3.0E+02 2.6E+02

MKB 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

MNC 2.8E+02 2.5E+02 2.5E+02 2.6E+02 2.6E+02 2.6E+02 2.6E+02

MNH 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

MNB 2.5E+02 2.5E+02 2.5E+02 2.5E+02 0.0E+00 2.6E+02 2.6E+02

210

Table 22: Learned policy for E CO a by turn for 15 turn UrbanSim game using DQ-C.

STRATEGY 1 2 3 4 5 6 7 8

SKC 6.3E-316 4.8E-316 1.0E-315 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316

SKH 2.6E+02 2.4E+02 2.6E+02 2.3E+02 2.4E+02 2.4E+02 2.3E+02 2.5E+02

SKB 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316

SNC 2.4E+02 2.4E+02 2.3E+02 2.3E+02 2.3E+02 2.4E+02 2.4E+02 2.4E+02

SNH 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316

SNB 2.4E+02 2.3E+02 2.4E+02 2.4E+02 0.0E+00 2.4E+02 2.4E+02 2.4E+02

MKC 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316

MKH 2.3E+02 2.4E+02 2.3E+02 2.4E+02 2.3E+02 2.4E+02 2.4E+02 2.4E+02

MKB 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316

MNC 2.4E+02 2.3E+02 2.3E+02 2.4E+02 2.3E+02 2.3E+02 2.7E+02 2.3E+02

MNH 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316

MNB 2.4E+02 2.4E+02 2.4E+02 2.3E+02 2.6E+02 2.4E+02 2.4E+02 2.4E+02

9 10 11 12 13 14 15

SKC 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316

SKH 2.5E+02 0.0E+00 2.5E+02 2.6E+02 2.5E+02 2.7E+02 3.0E+02

SKB 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316

SNC 2.4E+02 2.5E+02 2.5E+02 2.5E+02 2.6E+02 2.6E+02 0.0E+00

SNH 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316

SNB 2.4E+02 2.5E+02 2.6E+02 2.6E+02 2.5E+02 2.6E+02 2.6E+02

MKC 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316

MKH 2.5E+02 2.5E+02 2.6E+02 2.9E+02 2.6E+02 2.6E+02 2.5E+02

MKB 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316

MNC 2.5E+02 2.5E+02 2.9E+02 2.6E+02 2.6E+02 2.6E+02 2.6E+02

MNH 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316

MNB 2.8E+02 2.5E+02 2.6E+02 2.5E+02 2.6E+02 2.6E+02 2.7E+02

211

Table 23: Learned policy for F CO a by turn for 15 turn UrbanSim game using DQ-C.

STRATEGY 1 2 3 4 5 6 7 8

SKC 6.3E-316 4.8E-316 1.0E-315 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316

SKH 0.0E+00 2.3E+02 2.3E+02 2.4E+02 2.4E+02 2.4E+02 2.4E+02 2.4E+02

SKB 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316

SNC 2.4E+02 0.0E+00 2.4E+02 2.4E+02 2.4E+02 2.4E+02 2.7E+02 2.4E+02

SNH 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316

SNB 2.6E+02 2.4E+02 2.4E+02 2.3E+02 2.3E+02 2.4E+02 2.4E+02 2.7E+02

MKC 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316

MKH 2.4E+02 2.4E+02 2.3E+02 2.4E+02 2.3E+02 2.4E+02 2.4E+02 2.4E+02

MKB 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316

MNC 2.3E+02 2.3E+02 2.4E+02 2.4E+02 2.4E+02 2.4E+02 2.4E+02 2.5E+02

MNH 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316

MNB 2.4E+02 2.4E+02 2.3E+02 2.3E+02 2.3E+02 2.4E+02 2.4E+02 2.4E+02

9 10 11 12 13 14 15

SKC 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316

SKH 2.4E+02 2.5E+02 2.6E+02 2.6E+02 2.6E+02 3.0E+02 2.6E+02

SKB 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316

SNC 2.4E+02 2.5E+02 2.5E+02 2.9E+02 2.6E+02 2.6E+02 2.7E+02

SNH 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316

SNB 2.5E+02 2.5E+02 2.5E+02 2.5E+02 2.6E+02 2.7E+02 2.6E+02

MKC 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316

MKH 2.5E+02 2.5E+02 2.6E+02 2.6E+02 2.6E+02 2.6E+02 2.6E+02

MKB 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316

MNC 2.5E+02 2.5E+02 2.9E+02 2.6E+02 2.9E+02 0.0E+00 3.0E+02

MNH 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316

MNB 2.4E+02 2.5E+02 2.5E+02 0.0E+00 2.5E+02 2.6E+02 2.6E+02

212

Table 24: Learned policy for E CO b by turn for 15 turn UrbanSim game using DQ-C.

STRATEGY 1 2 3 4 5 6 7 8

SKC 6.3E-316 4.8E-316 1.0E-315 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316

SKH 2.4E+02 2.4E+02 2.4E+02 2.4E+02 2.3E+02 2.4E+02 2.4E+02 2.4E+02

SKB 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316

SNC 2.3E+02 2.3E+02 2.6E+02 2.3E+02 2.3E+02 2.4E+02 2.4E+02 2.5E+02

SNH 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316

SNB 2.6E+02 2.3E+02 2.3E+02 2.4E+02 2.4E+02 2.6E+02 2.4E+02 2.5E+02

MKC 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316

MKH 2.3E+02 2.4E+02 2.3E+02 2.3E+02 2.4E+02 2.4E+02 2.4E+02 2.3E+02

MKB 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316

MNC 2.4E+02 2.4E+02 2.3E+02 2.4E+02 2.4E+02 2.4E+02 2.4E+02 2.5E+02

MNH 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316

MNB 2.4E+02 2.4E+02 2.3E+02 2.4E+02 2.4E+02 2.4E+02 2.4E+02 2.4E+02

9 10 11 12 13 14 15

SKC 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316

SKH 2.5E+02 2.5E+02 2.5E+02 2.9E+02 2.6E+02 0.0E+00 2.6E+02

SKB 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316

SNC 2.8E+02 2.8E+02 2.5E+02 2.6E+02 2.6E+02 2.7E+02 2.6E+02

SNH 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316

SNB 2.5E+02 2.5E+02 2.9E+02 2.6E+02 2.6E+02 2.6E+02 2.6E+02

MKC 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316

MKH 2.4E+02 2.5E+02 2.6E+02 2.6E+02 0.0E+00 2.6E+02 0.0E+00

MKB 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316

MNC 2.4E+02 2.5E+02 2.6E+02 2.5E+02 2.6E+02 2.6E+02 2.6E+02

MNH 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316

MNB 2.4E+02 2.5E+02 2.6E+02 2.6E+02 2.6E+02 2.6E+02 3.0E+02

213

Table 25: Learned policy for F CO b by turn for 15 turn UrbanSim game using DQ-C.

STRATEGY 1 2 3 4 5 6 7 8

SKC 6.3E-316 4.8E-316 1.0E-315 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316

SKH 2.4E+02 2.6E+02 2.3E+02 2.4E+02 2.4E+02 2.4E+02 2.4E+02 2.4E+02

SKB 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316

SNC 2.3E+02 2.4E+02 0.0E+00 0.0E+00 2.6E+02 2.4E+02 2.4E+02 2.7E+02

SNH 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316

SNB 2.4E+02 2.3E+02 2.3E+02 2.3E+02 2.3E+02 2.3E+02 2.4E+02 2.4E+02

MKC 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316

MKH 2.4E+02 2.4E+02 2.4E+02 2.3E+02 2.3E+02 2.4E+02 2.4E+02 2.3E+02

MKB 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316

MNC 2.4E+02 2.4E+02 2.3E+02 2.4E+02 2.4E+02 2.4E+02 2.4E+02 0.0E+00

MNH 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316

MNB 2.3E+02 2.4E+02 2.3E+02 2.3E+02 2.4E+02 2.4E+02 2.4E+02 2.5E+02

9 10 11 12 13 14 15

SKC 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316

SKH 2.4E+02 2.5E+02 2.5E+02 2.6E+02 2.6E+02 2.6E+02 2.6E+02

SKB 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316

SNC 2.8E+02 2.5E+02 2.6E+02 2.9E+02 2.6E+02 0.0E+00 2.5E+02

SNH 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316

SNB 2.5E+02 2.5E+02 2.6E+02 2.6E+02 2.6E+02 2.6E+02 2.6E+02

MKC 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316

MKH 2.5E+02 2.5E+02 2.6E+02 2.6E+02 2.6E+02 2.6E+02 2.6E+02

MKB 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316

MNC 2.5E+02 2.8E+02 2.5E+02 2.6E+02 2.6E+02 2.7E+02 2.6E+02

MNH 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316

MNB 0.0E+00 2.5E+02 2.5E+02 2.5E+02 2.6E+02 2.7E+02 2.6E+02

214

Table 26: Learned policy for G CO a by turn for 15 turn UrbanSim game using DQ-C.

STRATEGY 1 2 3 4 5 6 7 8

SKC 6.5E-316 4.8E-316 1.0E-315 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316

SKH 2.4E+02 2.4E+02 2.3E+02 2.4E+02 2.4E+02 2.4E+02 2.3E+02 2.4E+02

SKB 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316

SNC 2.3E+02 0.0E+00 2.4E+02 2.3E+02 2.3E+02 2.4E+02 2.4E+02 2.3E+02

SNH 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316

SNB 2.6E+02 0.0E+00 2.3E+02 2.3E+02 2.3E+02 2.4E+02 2.4E+02 0.0E+00

MKC 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316

MKH 2.4E+02 2.3E+02 2.4E+02 2.4E+02 2.4E+02 2.4E+02 2.4E+02 2.4E+02

MKB 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316

MNC 2.4E+02 2.4E+02 2.6E+02 2.3E+02 2.4E+02 2.4E+02 2.4E+02 2.5E+02

MNH 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316

MNB 2.3E+02 2.4E+02 0.0E+00 2.4E+02 2.3E+02 2.4E+02 2.4E+02 2.4E+02

9 10 11 12 13 14 15

SKC 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316

SKH 2.5E+02 2.5E+02 2.5E+02 2.6E+02 2.5E+02 2.6E+02 2.6E+02

SKB 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316

SNC 2.4E+02 2.5E+02 0.0E+00 2.6E+02 2.6E+02 2.6E+02 2.6E+02

SNH 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316

SNB 2.5E+02 2.5E+02 2.5E+02 2.6E+02 2.6E+02 2.7E+02 3.0E+02

MKC 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316

MKH 2.5E+02 0.0E+00 2.6E+02 2.6E+02 2.6E+02 2.6E+02 2.5E+02

MKB 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316

MNC 2.5E+02 2.5E+02 2.5E+02 2.5E+02 2.6E+02 3.0E+02 0.0E+00

MNH 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316

MNB 2.4E+02 2.5E+02 2.5E+02 2.6E+02 2.6E+02 2.7E+02 2.6E+02

215

Table 27: Learned policy for H CO a by turn for 15 turn UrbanSim game using DQ-C.

STRATEGY 1 2 3 4 5 6 7 8

SKC 6.3E-316 4.8E-316 2.3E+02 2.3E+02 2.4E+02 2.4E+02 2.7E+02 2.4E+02

SKH 2.4E+02 2.4E+02 0.0E+00 2.4E+02 2.6E+02 2.4E+02 2.7E+02 2.3E+02

SKB 2.4E+02 2.4E+02 0.0E+00 2.4E+02 2.3E+02 2.4E+02 2.4E+02 2.5E+02

SNC 2.4E+02 2.4E+02 2.3E+02 2.3E+02 2.4E+02 2.4E+02 2.4E+02 2.4E+02

SNH 2.4E+02 2.4E+02 2.4E+02 2.3E+02 2.6E+02 2.4E+02 2.4E+02 2.5E+02

SNB 2.4E+02 2.3E+02 2.3E+02 2.6E+02 2.4E+02 2.4E+02 0.0E+00 2.7E+02

MKC 2.4E+02 2.3E+02 2.4E+02 2.4E+02 2.3E+02 2.6E+02 2.4E+02 2.4E+02

MKH 2.3E+02 2.4E+02 2.4E+02 2.4E+02 2.4E+02 2.4E+02 2.4E+02 2.4E+02

MKB 2.3E+02 2.4E+02 2.3E+02 2.4E+02 0.0E+00 2.3E+02 2.4E+02 2.4E+02

MNC 2.4E+02 2.4E+02 2.3E+02 0.0E+00 2.3E+02 2.4E+02 2.4E+02 2.4E+02

MNH 2.4E+02 2.4E+02 2.3E+02 2.6E+02 0.0E+00 2.4E+02 2.4E+02 2.7E+02

MNB 2.4E+02 2.3E+02 2.3E+02 0.0E+00 2.4E+02 2.4E+02 2.4E+02 2.4E+02

9 10 11 12 13 14 15

SKC 2.5E+02 0.0E+00 2.5E+02 2.9E+02 2.9E+02 2.6E+02 2.7E+02

SKH 2.5E+02 2.5E+02 2.6E+02 2.6E+02 2.6E+02 3.0E+02 2.6E+02

SKB 2.5E+02 2.5E+02 2.6E+02 2.5E+02 2.6E+02 2.6E+02 2.6E+02

SNC 2.4E+02 2.5E+02 2.5E+02 2.5E+02 0.0E+00 2.7E+02 3.0E+02

SNH 2.5E+02 2.5E+02 2.5E+02 2.6E+02 2.6E+02 3.0E+02 3.0E+02

SNB 2.4E+02 2.5E+02 2.6E+02 2.9E+02 2.6E+02 2.6E+02 2.6E+02

MKC 2.4E+02 2.8E+02 2.6E+02 2.5E+02 2.6E+02 2.6E+02 2.6E+02

MKH 2.5E+02 2.8E+02 2.5E+02 2.6E+02 2.6E+02 2.6E+02 2.6E+02

MKB 2.5E+02 2.5E+02 2.5E+02 2.6E+02 2.6E+02 2.7E+02 2.5E+02

MNC 2.5E+02 2.5E+02 2.6E+02 2.6E+02 2.5E+02 2.7E+02 2.6E+02

MNH 2.4E+02 2.5E+02 2.5E+02 2.6E+02 2.6E+02 2.6E+02 2.6E+02

MNB 2.5E+02 2.5E+02 2.5E+02 2.5E+02 2.5E+02 2.6E+02 2.5E+02

216

Table 28: Learned policy for G CO b by turn for 15 turn UrbanSim game using DQ-C.

STRATEGY 1 2 3 4 5 6 7 8

SKC 6.3E-316 4.8E-316 1.0E-315 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316

SKH 2.4E+02 2.4E+02 2.4E+02 2.4E+02 2.3E+02 2.4E+02 2.4E+02 2.4E+02

SKB 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316

SNC 2.3E+02 2.4E+02 2.3E+02 2.4E+02 2.3E+02 2.4E+02 2.4E+02 2.4E+02

SNH 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316

SNB 2.6E+02 2.4E+02 2.6E+02 2.4E+02 2.4E+02 2.4E+02 2.4E+02 2.4E+02

MKC 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316

MKH 2.4E+02 2.4E+02 2.4E+02 2.4E+02 2.4E+02 0.0E+00 2.4E+02 2.5E+02

MKB 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316

MNC 2.4E+02 2.6E+02 2.3E+02 2.4E+02 2.4E+02 2.4E+02 2.4E+02 2.3E+02

MNH 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316

MNB 2.3E+02 2.4E+02 2.3E+02 2.3E+02 2.3E+02 2.4E+02 2.4E+02 0.0E+00

9 10 11 12 13 14 15

SKC 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316

SKH 2.8E+02 2.5E+02 2.5E+02 2.6E+02 0.0E+00 2.6E+02 2.7E+02

SKB 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316

SNC 2.5E+02 2.4E+02 2.5E+02 2.6E+02 2.5E+02 0.0E+00 2.6E+02

SNH 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316 7.1E-316

SNB 2.4E+02 2.5E+02 2.9E+02 2.6E+02 2.6E+02 2.6E+02 2.6E+02

MKC 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316

MKH 2.5E+02 2.5E+02 2.5E+02 2.5E+02 2.6E+02 2.6E+02 2.6E+02

MKB 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316

MNC 2.5E+02 2.5E+02 2.5E+02 2.6E+02 2.5E+02 0.0E+00 2.6E+02

MNH 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316

MNB 2.5E+02 2.5E+02 2.6E+02 2.6E+02 2.6E+02 2.6E+02 2.6E+02

217

Table 29: Learned policy for QRF by turn for 15 turn UrbanSim game using DQ-C.

STRATEGY 1 2 3 4 5 6 7 8

SKC 6.3E-316 4.8E-316 2.3E+02 2.3E+02 2.4E+02 2.4E+02 2.4E+02 2.5E+02

SKH 2.4E+02 2.4E+02 2.4E+02 2.4E+02 2.3E+02 2.4E+02 2.4E+02 2.4E+02

SKB 2.4E+02 2.3E+02 2.4E+02 0.0E+00 2.4E+02 2.4E+02 2.4E+02 2.4E+02

SNC 2.3E+02 2.4E+02 2.3E+02 2.4E+02 2.3E+02 2.4E+02 2.4E+02 2.4E+02

SNH 2.6E+02 2.4E+02 2.4E+02 2.3E+02 2.4E+02 2.3E+02 2.4E+02 2.4E+02

SNB 2.6E+02 2.4E+02 2.6E+02 2.4E+02 2.4E+02 2.4E+02 2.4E+02 2.4E+02

MKC 2.3E+02 2.4E+02 2.3E+02 2.6E+02 2.3E+02 2.4E+02 2.4E+02 2.4E+02

MKH 2.4E+02 2.4E+02 2.4E+02 2.4E+02 2.4E+02 0.0E+00 2.4E+02 2.5E+02

MKB 2.4E+02 2.4E+02 2.3E+02 2.4E+02 2.4E+02 2.4E+02 2.4E+02 2.4E+02

MNC 2.4E+02 2.6E+02 2.3E+02 2.4E+02 2.4E+02 2.4E+02 2.4E+02 2.3E+02

MNH 2.4E+02 2.4E+02 2.6E+02 2.3E+02 2.3E+02 2.4E+02 2.4E+02 2.4E+02

MNB 2.3E+02 2.4E+02 2.3E+02 2.3E+02 2.3E+02 2.4E+02 2.4E+02 0.0E+00

9 10 11 12 13 14 15

SKC 2.8E+02 2.5E+02 2.5E+02 2.6E+02 2.6E+02 0.0E+00 2.6E+02

SKH 2.8E+02 2.5E+02 2.5E+02 2.6E+02 0.0E+00 2.6E+02 2.7E+02

SKB 2.5E+02 0.0E+00 2.6E+02 2.5E+02 2.6E+02 2.6E+02 3.0E+02

SNC 2.5E+02 2.4E+02 2.5E+02 2.6E+02 2.5E+02 0.0E+00 2.6E+02

SNH 2.5E+02 2.8E+02 2.5E+02 2.6E+02 2.6E+02 2.6E+02 2.6E+02

SNB 2.4E+02 2.5E+02 2.9E+02 2.6E+02 2.6E+02 2.6E+02 2.6E+02

MKC 2.5E+02 2.5E+02 2.5E+02 2.6E+02 2.6E+02 2.6E+02 2.6E+02

MKH 2.5E+02 2.5E+02 2.5E+02 2.5E+02 2.6E+02 2.6E+02 2.6E+02

MKB 2.4E+02 2.5E+02 2.5E+02 2.6E+02 2.5E+02 2.6E+02 2.6E+02

MNC 2.5E+02 2.5E+02 2.5E+02 2.6E+02 2.5E+02 0.0E+00 2.6E+02

MNH 2.5E+02 2.5E+02 2.5E+02 2.9E+02 2.6E+02 3.0E+02 2.7E+02

MNB 2.5E+02 2.5E+02 2.6E+02 2.6E+02 2.6E+02 2.6E+02 2.6E+02

218

Table 30: Learned policy for H CO b by turn for 15 turn UrbanSim game using DQ-C.

STRATEGY 1 2 3 4 5 6 7 8

SKC 6.3E-316 4.8E-316 2.3E+02 2.3E+02 2.4E+02 2.4E+02 2.7E+02 2.4E+02

SKH 2.4E+02 0.0E+00 2.3E+02 2.4E+02 2.6E+02 2.4E+02 2.4E+02 2.5E+02

SKB 2.4E+02 2.4E+02 0.0E+00 2.4E+02 2.3E+02 2.4E+02 2.4E+02 2.5E+02

SNC 2.4E+02 2.4E+02 2.4E+02 2.3E+02 2.3E+02 2.4E+02 2.4E+02 2.4E+02

SNH 2.4E+02 2.4E+02 2.4E+02 2.3E+02 2.6E+02 2.4E+02 2.4E+02 2.5E+02

SNB 2.4E+02 2.3E+02 2.6E+02 2.4E+02 2.3E+02 2.4E+02 2.4E+02 2.4E+02

MKC 2.4E+02 2.3E+02 2.4E+02 2.4E+02 2.3E+02 2.6E+02 2.4E+02 2.4E+02

MKH 2.3E+02 2.4E+02 2.4E+02 2.4E+02 2.4E+02 2.3E+02 2.4E+02 2.4E+02

MKB 2.3E+02 2.4E+02 2.3E+02 2.4E+02 0.0E+00 2.3E+02 2.4E+02 2.4E+02

MNC 2.4E+02 2.4E+02 2.3E+02 2.3E+02 2.4E+02 2.4E+02 2.4E+02 2.7E+02

MNH 2.4E+02 2.4E+02 2.3E+02 2.6E+02 0.0E+00 2.4E+02 2.4E+02 2.7E+02

MNB 2.3E+02 2.6E+02 2.3E+02 2.4E+02 2.4E+02 2.4E+02 2.4E+02 2.4E+02

9 10 11 12 13 14 15

SKC 2.5E+02 0.0E+00 2.5E+02 2.9E+02 2.9E+02 2.6E+02 2.7E+02

SKH 0.0E+00 2.5E+02 2.5E+02 2.5E+02 2.9E+02 3.0E+02 2.6E+02

SKB 2.5E+02 2.5E+02 2.6E+02 2.5E+02 2.6E+02 2.6E+02 2.6E+02

SNC 2.4E+02 2.5E+02 2.5E+02 2.6E+02 2.6E+02 2.7E+02 2.6E+02

SNH 2.5E+02 2.5E+02 2.5E+02 2.6E+02 2.6E+02 3.0E+02 3.0E+02

SNB 2.8E+02 2.5E+02 2.9E+02 2.5E+02 2.6E+02 2.6E+02 2.6E+02

MKC 2.4E+02 2.8E+02 2.6E+02 2.5E+02 2.6E+02 2.6E+02 2.6E+02

MKH 2.5E+02 2.5E+02 2.5E+02 2.5E+02 2.6E+02 2.6E+02 2.6E+02

MKB 2.5E+02 2.5E+02 2.5E+02 2.6E+02 2.6E+02 2.7E+02 2.5E+02

MNC 2.5E+02 2.5E+02 2.5E+02 2.6E+02 2.6E+02 2.7E+02 2.6E+02

MNH 2.4E+02 2.5E+02 2.5E+02 2.6E+02 2.6E+02 2.6E+02 2.6E+02

MNB 2.5E+02 2.5E+02 2.5E+02 2.9E+02 2.6E+02 2.6E+02 2.6E+02

219

Table 31: Learned policy for Battalion Commander by turn for 15 turn UrbanSim game

using Q(λ).

STRATEGY 1 2 3 4 5 6 7 8

SKC 6.3E-316 2.1E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

SKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SKB 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

SNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SNH 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

SNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKC 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

MKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKB 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

MNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MNH 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

MNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

9 10 11 12 13 14 15

SKC 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

SKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SKB 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

SNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SNH 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

SNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKC 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

MKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKB 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

MNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MNH 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

MNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

220

Table 32: Learned policy for CA unit by turn for 15 turn UrbanSim game using Q(λ).

STRATEGY 1 2 3 4 5 6 7 8

SKC 7.2E-316 7.7E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

SKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SKB 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

SNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SNH 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

SNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKC 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

MKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKB 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

MNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MNH 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

MNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

9 10 11 12 13 14 15

SKC 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

SKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SKB 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

SNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SNH 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

SNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKC 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

MKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKB 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

MNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MNH 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

MNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

221

Table 33: Learned policy for E CO b by turn for 15 turn UrbanSim game using Q(λ).

STRATEGY 1 2 3 4 5 6 7 8

SKC 7.2E-316 7.7E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

SKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SKB 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

SNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SNH 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

SNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKC 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

MKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKB 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

MNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MNH 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

MNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

9 10 11 12 13 14 15

SKC 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

SKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SKB 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

SNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SNH 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

SNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKC 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

MKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKB 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

MNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MNH 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

MNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

222

Table 34: Learned policy for E CO a by turn for 15 turn UrbanSim game using Q(λ).

STRATEGY 1 2 3 4 5 6 7 8

SKC 7.2E-316 7.7E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

SKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SKB 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

SNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SNH 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

SNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKC 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

MKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKB 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

MNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MNH 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

MNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

9 10 11 12 13 14 15

SKC 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

SKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SKB 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

SNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SNH 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

SNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKC 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

MKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKB 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

MNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MNH 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

MNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

223

Table 35: Learned policy for F CO a by turn for 15 turn UrbanSim game using Q(λ).

STRATEGY 1 2 3 4 5 6 7 8

SKC 6.3E-316 7.7E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

SKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SKB 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

SNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SNH 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

SNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKC 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

MKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKB 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

MNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MNH 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

MNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

9 10 11 12 13 14 15

SKC 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

SKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SKB 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

SNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SNH 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

SNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKC 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

MKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKB 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

MNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MNH 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

MNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

224

Table 36: Learned policy for F CO b by turn for 15 turn UrbanSim game using Q(λ).

STRATEGY 1 2 3 4 5 6 7 8

SKC 6.3E-316 7.7E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

SKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SKB 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

SNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SNH 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

SNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKC 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

MKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKB 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

MNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MNH 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

MNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

9 10 11 12 13 14 15

SKC 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

SKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SKB 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

SNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SNH 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

SNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKC 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

MKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKB 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

MNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MNH 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

MNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

225

Table 37: Learned policy for G CO b by turn for 15 turn UrbanSim game using Q(λ).

STRATEGY 1 2 3 4 5 6 7 8

SKC 6.3E-316 7.7E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

SKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SKB 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

SNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SNH 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

SNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKC 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

MKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKB 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

MNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MNH 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

MNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

9 10 11 12 13 14 15

SKC 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

SKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SKB 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

SNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SNH 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

SNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKC 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

MKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKB 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

MNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MNH 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

MNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

226

Table 38: Learned policy for G CO a by turn for 15 turn UrbanSim game using Q(λ).

STRATEGY 1 2 3 4 5 6 7 8

SKC 6.3E-316 7.7E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

SKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SKB 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

SNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SNH 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

SNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKC 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

MKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKB 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

MNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MNH 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

MNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

9 10 11 12 13 14 15

SKC 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

SKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SKB 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

SNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SNH 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

SNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKC 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

MKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKB 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

MNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MNH 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

MNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

227

Table 39: Learned policy for H CO a by turn for 15 turn UrbanSim game using Q(λ).

STRATEGY 1 2 3 4 5 6 7 8

SKC 6.3E-316 7.7E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

SKH 9.5E+01 9.2E+01 0.0E+00 7.3E+01 4.8E+01 2.8E+01 9.3E+01 3.0E+02

SKB 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

SNC 3.2E+01 7.1E+01 4.8E+01 8.9E+01 7.3E+01 7.3E+01 5.3E+01 7.0E+01

SNH 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

SNB 6.0E+01 5.0E+01 2.8E+02 2.8E+02 1.0E+02 7.4E+01 0.0E+00 5.1E+01

MKC 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

MKH 9.3E+01 5.0E+01 1.0E+02 5.1E+01 2.7E+01 2.8E+01 2.6E+01 7.3E+01

MKB 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

MNC 9.3E+01 7.2E+01 4.9E+01 0.0E+00 6.9E+01 9.5E+01 9.2E+01 9.9E+01

MNH 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

MNB 8.6E+01 7.1E+01 4.6E+01 0.0E+00 7.4E+01 2.9E+02 7.7E+01 9.5E+01

9 10 11 12 13 14 15

SKC 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

SKH 2.7E+01 2.9E+01 5.7E+01 5.7E+01 3.4E+02 3.4E+01 1.1E+02

SKB 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

SNC 7.7E+01 1.0E+02 7.8E+01 2.7E+01 0.0E+00 3.1E+01 3.5E+02

SNH 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

SNB 7.7E+01 8.1E+01 1.2E+02 3.3E+02 1.0E+02 1.1E+02 8.9E+01

MKC 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

MKH 7.6E+01 3.0E+01 2.9E+01 8.6E+01 6.0E+01 6.1E+01 1.2E+02

MKB 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

MNC 9.2E+01 7.9E+01 5.5E+01 5.7E+01 5.6E+01 8.0E+01 1.3E+02

MNH 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

MNB 3.1E+02 3.0E+01 1.2E+02 1.2E+02 8.4E+01 8.1E+01 5.2E+01

228

Table 40: Learned policy for QRF by turn for 15 turn UrbanSim game using Q(λ).

STRATEGY 1 2 3 4 5 6 7 8

SKC 7.2E-316 6.3E-316 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SKH 1.5E-94 3.3E-86 2.2E-57 5.8E+252 3.3E-86 2.2E-57 5.8E+252 3.3E-86

SKB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SNC 5.8E+252 3.3E-86 2.2E-57 5.8E+252 1.2E-76 7.6E-96 7.3E+199 8.0E-96

SNH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SNB 1.1E-95 1.3E-71 1.2E+224 1.2E-76 8.1E-96 7.3E+199 3.3E-86 2.2E-57

MKC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKH 8.2E-67 1.2E+224 1.2E-76 8.5E-96 7.3E+199 3.3E-86 2.2E-57 5.8E+252

MKB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MNC 1.2E+224 1.2E-76 9.0E-96 7.3E+199 3.3E-86 2.2E-57 5.8E+252 1.3E-76

MNH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MNB 1.2E-76 9.5E-96 7.3E+199 3.3E-86 2.2E-57 5.8E+252 1.3E-76 9.4E-96

9 10 11 12 13 14 15

SKC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SKH 2.2E-57 5.8E+252 3.3E-86 2.2E-57 5.8E+252 3.3E-86 2.2E-57

SKB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SNC 1.3E-71 1.2E+224 1.2E-76 8.1E-96 7.3E+199 3.3E-86 2.2E-57

SNH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SNB 5.8E+252 3.3E-86 2.2E-57 5.8E+252 3.3E-86 2.2E-57 5.8E+252

MKC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKH 1.3E-76 9.4E-96 1.5E-94 1.3E-259 4.0E+15 8.1E-72 1.3E-259

MKB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MNC 9.4E-96 1.5E-94 1.3E-259 4.0E+15 5.3E-67 5.2E-58 2.5E+06

MNH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MNB 1.5E-94 1.3E-259 4.0E+15 3.5E-62 5.2E-58 2.5E+06 9.0E-96

229

Table 41: Learned policy for H CO b by turn for 15 turn UrbanSim game using Q(λ).

STRATEGY 1 2 3 4 5 6 7 8

SKC 6.3E-316 7.7E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

SKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SKB 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

SNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SNH 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

SNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKC 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

MKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKB 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

MNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MNH 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

MNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

9 10 11 12 13 14 15

SKC 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

SKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SKB 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

SNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SNH 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

SNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKC 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

MKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKB 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

MNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MNH 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316 6.4E-316

MNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

230

Table 42: Learned policy for Battalion Commander by turn for 15 turn UrbanSim game

using SARSA(λ).

STRATEGY 1 2 3 4 5 6 7 8

SKC 6.3E-316 5.1E-316 4.8E-316 4.9E-316 4.9E-316 6.2E-316 4.9E-316 2.0E-316

SKH -5.3E+10 -5.2E+10 -5.6E+10 -3.3E+10 -3.2E+10 -6.9E+10 -2.7E+10 -7.2E+10

SKB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SNC -5.3E+10 -5.1E+10 -5.6E+10 -3.2E+10 -3.2E+10 -6.8E+10 -2.7E+10 -7.2E+10

SNH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SNB -5.2E+10 -5.2E+10 -5.6E+10 -3.3E+10 -3.2E+10 -6.8E+10 8.8E+14 3.3E+14

MKC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKH -5.3E+10 -5.1E+10 -5.5E+10 -3.3E+10 -3.1E+10 -6.9E+10 -2.7E+10 -7.2E+10

MKB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MNC 6.8E+14 -5.2E+10 -5.6E+10 -3.3E+10 -3.2E+10 -6.9E+10 -2.7E+10 -7.1E+10

MNH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MNB -5.3E+10 7.3E+14 -5.6E+10 -3.3E+10 -3.2E+10 -6.8E+10 -2.7E+10 -7.1E+10

9 10 11 12 13 14 15

SKC 6.2E-316 6.2E-316 6.2E-316 6.2E-316 6.2E-316 6.2E-316 6.2E-316

SKH -2.7E+10 -6.0E+10 -4.1E+10 -7.5E+10 -5.0E+10 -5.2E+10 -4.9E+10

SKB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SNC -2.7E+10 -6.0E+10 -4.1E+10 -7.5E+10 9.4E+14 7.0E+14 7.3E+14

SNH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SNB -2.7E+10 -5.9E+10 -4.1E+10 -7.5E+10 -5.0E+10 -5.2E+10 -4.9E+10

MKC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKH -2.7E+10 -6.0E+10 -4.1E+10 -7.6E+10 -5.0E+10 -5.1E+10 -4.9E+10

MKB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MNC -2.7E+10 -6.0E+10 7.8E+14 5.5E+14 -5.1E+10 -5.2E+10 -4.9E+10

MNH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MNB -2.7E+10 -6.0E+10 -4.1E+10 -7.5E+10 -5.0E+10 -5.2E+10 -4.9E+10

231

Table 43: Learned policy for CA unit by turn for 15 turn UrbanSim game using SARSA(λ).

STRATEGY 1 2 3 4 5 6 7 8

SKC 6.3E-316 5.1E-316 4.8E-316 4.9E-316 4.9E-316 6.2E-316 4.9E-316 2.0E-316

SKH -5.4E+12 -5.2E+12 -5.8E+12 -3.0E+12 -2.9E+12 -8.1E+12 -2.4E+12 -8.7E+12

SKB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SNC -5.4E+12 -5.2E+12 5.5E+14 -3.0E+12 -2.9E+12 -8.0E+12 -2.4E+12 3.3E+14

SNH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SNB -5.5E+12 -5.2E+12 -5.8E+12 -3.0E+12 -2.9E+12 3.5E+14 -2.3E+12 -8.6E+12

MKC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKH -5.4E+12 -5.2E+12 -5.9E+12 -2.9E+12 -2.9E+12 -8.1E+12 -2.3E+12 -8.6E+12

MKB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MNC -5.5E+12 5.7E+14 -5.9E+12 -3.0E+12 5.2E+14 -8.2E+12 -2.4E+12 -8.6E+12

MNH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MNB 5.5E+14 -5.3E+12 -5.9E+12 -3.0E+12 -2.9E+12 -8.1E+12 -2.3E+12 -8.6E+12

9 10 11 12 13 14 15

SKC 6.2E-316 6.2E-316 6.2E-316 6.2E-316 6.2E-316 6.2E-316 6.2E-316

SKH -2.4E+12 3.5E+14 -4.0E+12 -8.8E+12 -5.1E+12 -5.3E+12 -5.0E+12

SKB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SNC -2.3E+12 -6.9E+12 -4.0E+12 -8.7E+12 -5.0E+12 -5.2E+12 -5.0E+12

SNH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SNB -2.3E+12 -6.9E+12 -4.0E+12 -8.8E+12 -5.0E+12 -5.3E+12 -5.0E+12

MKC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKH -2.3E+12 -6.9E+12 -3.9E+12 -8.8E+12 -5.0E+12 -5.3E+12 -5.0E+12

MKB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MNC -2.3E+12 -6.9E+12 -3.9E+12 -8.8E+12 -5.0E+12 -5.3E+12 -4.9E+12

MNH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MNB -2.4E+12 -6.8E+12 -4.0E+12 -8.7E+12 -5.1E+12 -5.3E+12 -4.9E+12

232

Table 44: Learned policy for E CO a by turn for 15 turn UrbanSim game using SARSA(λ).

STRATEGY 1 2 3 4 5 6 7 8

SKC 6.3E-316 5.1E-316 4.8E-316 4.9E-316 4.9E-316 6.2E-316 4.9E-316 2.0E-316

SKH -2.2E+14 -2.1E+14 -2.7E+14 -2.7E+14 -2.2E+14 -1.7E+14 -2.6E+14 -1.6E+14

SKB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SNC -2.8E+14 -2.3E+14 -2.4E+14 -2.3E+14 -1.8E+14 -1.9E+14 -2.2E+14 -1.5E+14

SNH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SNB -2.1E+14 -2.8E+14 -2.1E+14 -3.1E+14 -1.9E+14 -1.6E+14 -2.5E+14 -1.7E+14

MKC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKH -2.3E+14 -2.6E+14 -2.7E+14 -2.9E+14 -2.1E+14 -2.1E+14 -3.2E+14 -2.0E+14

MKB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MNC -2.7E+14 -2.9E+14 -2.8E+14 -2.8E+14 -2.5E+14 -1.8E+14 -2.6E+14 -1.9E+14

MNH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MNB -2.6E+14 -2.5E+14 -2.3E+14 -2.3E+14 -1.8E+14 -2.0E+14 -3.1E+14 -1.4E+14

9 10 11 12 13 14 15

SKC 6.2E-316 6.2E-316 6.2E-316 6.2E-316 6.2E-316 6.2E-316 6.2E-316

SKH -2.4E+14 -1.6E+14 -2.6E+14 -2.2E+14 -3.2E+14 -2.5E+14 -2.3E+14

SKB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SNC -2.9E+14 -1.9E+14 -2.1E+14 -2.0E+14 -3.1E+14 -2.3E+14 -3.2E+14

SNH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SNB -2.8E+14 -2.0E+14 -2.7E+14 -2.0E+14 -2.6E+14 -2.8E+14 -3.1E+14

MKC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKH -2.5E+14 -1.9E+14 -2.1E+14 -2.3E+14 -2.5E+14 -2.2E+14 -2.4E+14

MKB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MNC -3.1E+14 -1.7E+14 -2.2E+14 -2.4E+14 -2.4E+14 -2.6E+14 -2.5E+14

MNH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MNB -2.7E+14 -1.8E+14 -2.5E+14 -1.7E+14 -2.7E+14 -2.4E+14 -2.6E+14

233

Table 45: Learned policy for E CO b by turn for 15 turn UrbanSim game using SARSA(λ).

STRATEGY 1 2 3 4 5 6 7 8

SKC 6.3E-316 5.1E-316 4.8E-316 4.9E-316 4.9E-316 6.2E-316 4.9E-316 2.0E-316

SKH -2.5E+11 -2.4E+11 -2.6E+11 -1.5E+11 -1.4E+11 -3.3E+11 -1.2E+11 -3.5E+11

SKB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SNC -2.5E+11 -2.4E+11 9.9E+14 -1.5E+11 -1.4E+11 -3.3E+11 -1.2E+11 -3.5E+11

SNH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SNB -2.4E+11 -2.4E+11 -2.6E+11 1.4E+12 -1.4E+11 -3.4E+11 -1.2E+11 -3.5E+11

MKC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKH -2.5E+11 -2.4E+11 -2.6E+11 1.1E+15 -1.4E+11 -3.3E+11 -1.2E+11 -3.5E+11

MKB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MNC -2.5E+11 1.0E+15 -2.6E+11 -1.5E+11 -1.4E+11 -3.3E+11 -1.2E+11 -3.5E+11

MNH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MNB -2.5E+11 -2.4E+11 -2.6E+11 -1.5E+11 -1.4E+11 -3.3E+11 -1.2E+11 -3.5E+11

9 10 11 12 13 14 15

SKC 6.2E-316 6.2E-316 6.2E-316 6.2E-316 6.2E-316 6.2E-316 6.2E-316

SKH -1.2E+11 6.2E+14 -1.9E+11 -3.7E+11 1.1E+15 -2.4E+11 -2.3E+11

SKB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SNC -1.2E+11 -2.9E+11 -1.9E+11 -3.6E+11 -2.3E+11 -2.4E+11 -2.3E+11

SNH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SNB -1.2E+11 -2.9E+11 -1.9E+11 -3.7E+11 -2.3E+11 -2.4E+11 -2.3E+11

MKC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKH -1.2E+11 -2.9E+11 9.7E+14 -3.7E+11 -2.3E+11 -2.4E+11 -2.3E+11

MKB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MNC 1.1E+15 -2.9E+11 -1.9E+11 7.9E+14 -2.3E+11 -2.4E+11 -2.3E+11

MNH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MNB -1.2E+11 -2.9E+11 -1.9E+11 -3.6E+11 -2.3E+11 -2.4E+11 -2.3E+11

234

Table 46: Learned policy for F CO b by turn for 15 turn UrbanSim game using SARSA(λ).

STRATEGY 1 2 3 4 5 6 7 8

SKC 6.3E-316 5.1E-316 4.8E-316 4.9E-316 4.9E-316 6.2E-316 4.9E-316 2.0E-316

SKH -2.6E+13 -2.4E+13 -2.7E+13 -1.3E+13 -1.3E+13 -4.0E+13 2.8E+14 -4.3E+13

SKB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SNC -2.6E+13 -2.4E+13 -2.8E+13 -1.3E+13 -1.3E+13 -4.0E+13 -1.0E+13 -4.4E+13

SNH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SNB -2.5E+13 -2.4E+13 -2.8E+13 -1.3E+13 -1.3E+13 -4.0E+13 -1.0E+13 -4.4E+13

MKC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKH -2.6E+13 -2.4E+13 -2.8E+13 -1.3E+13 -1.3E+13 -4.1E+13 -1.0E+13 -4.3E+13

MKB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MNC 1.8E+14 -2.4E+13 -2.8E+13 -1.3E+13 -1.3E+13 5.3E+13 -1.0E+13 -4.4E+13

MNH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MNB -2.6E+13 -2.4E+13 -2.8E+13 2.8E+14 -1.3E+13 -4.0E+13 -1.0E+13 -4.4E+13

9 10 11 12 13 14 15

SKC 6.2E-316 6.2E-316 6.2E-316 6.2E-316 6.2E-316 6.2E-316 6.2E-316

SKH -1.0E+13 -3.4E+13 -1.8E+13 -4.3E+13 -2.4E+13 -2.5E+13 -2.3E+13

SKB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SNC -1.0E+13 -3.4E+13 -1.8E+13 -4.3E+13 -2.4E+13 -2.5E+13 -2.3E+13

SNH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SNB 2.9E+14 -3.4E+13 -1.8E+13 -4.3E+13 -2.3E+13 -2.5E+13 2.1E+14

MKC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKH -1.0E+13 -3.4E+13 -1.8E+13 6.2E+13 -2.3E+13 -2.5E+13 -2.3E+13

MKB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MNC -1.0E+13 -3.4E+13 -1.8E+13 -4.3E+13 -2.4E+13 2.0E+14 -2.3E+13

MNH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MNB -1.0E+13 6.7E+13 -1.8E+13 -4.3E+13 -2.4E+13 -2.5E+13 -2.3E+13

235

Table 47: Learned policy for F CO a by turn for 15 turn UrbanSim game using SARSA(λ).

STRATEGY 1 2 3 4 5 6 7 8

SKC 6.3E-316 5.1E-316 4.8E-316 4.9E-316 4.9E-316 6.2E-316 4.9E-316 2.0E-316

SKH -1.2E+14 -7.4E+13 -1.1E+14 -1.2E+14 -8.5E+13 -6.2E+13 -1.4E+14 -4.5E+13

SKB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SNC -1.1E+14 -1.1E+14 -9.5E+13 -1.5E+14 -7.8E+13 -5.9E+13 -1.1E+14 -5.0E+13

SNH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SNB -8.2E+13 -1.1E+14 -9.9E+13 -1.4E+14 -7.1E+13 -4.3E+13 -8.7E+13 -3.1E+13

MKC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKH -9.0E+13 -1.2E+14 -7.1E+13 -1.2E+14 -1.1E+14 -3.3E+13 -1.2E+14 -6.1E+13

MKB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MNC -1.1E+14 -9.4E+13 -1.2E+14 -1.3E+14 -1.0E+14 -5.6E+13 -1.0E+14 -3.9E+13

MNH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MNB -9.5E+13 -8.6E+13 -8.6E+13 -1.0E+14 -8.1E+13 -6.5E+13 -1.5E+14 -5.3E+13

9 10 11 12 13 14 15

SKC 6.2E-316 6.2E-316 6.2E-316 6.2E-316 6.2E-316 6.2E-316 6.2E-316

SKH -1.2E+14 -6.3E+13 -1.1E+14 -3.7E+13 -7.9E+13 -1.2E+14 -1.2E+14

SKB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SNC -9.0E+13 -3.8E+13 -7.0E+13 -6.0E+13 -8.8E+13 -1.1E+14 -8.2E+13

SNH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SNB -1.1E+14 -4.4E+13 -1.0E+14 -5.1E+13 -1.3E+14 -9.1E+13 -7.8E+13

MKC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKH -1.2E+14 -4.6E+13 -8.4E+13 -4.9E+13 -1.1E+14 -7.5E+13 -7.5E+13

MKB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MNC -1.5E+14 -5.7E+13 -9.2E+13 -7.3E+13 -8.3E+13 -7.2E+13 -8.6E+13

MNH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MNB -1.1E+14 -4.9E+13 -6.7E+13 -6.3E+13 -1.2E+14 -9.6E+13 -1.1E+14

236

Table 48: Learned policy for G CO a by turn for 15 turn UrbanSim game using SARSA(λ).

STRATEGY 1 2 3 4 5 6 7 8

SKC 6.3E-316 5.1E-316 4.8E-316 4.9E-316 4.9E-316 6.2E-316 4.9E-316 2.0E-316

SKH -1.7E+14 -1.6E+14 -1.8E+14 -1.7E+14 -1.4E+14 -1.0E+14 -1.9E+14 -1.4E+14

SKB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SNC -2.1E+14 -2.1E+14 -1.7E+14 -2.4E+14 -1.8E+14 -1.5E+14 -2.2E+14 -1.4E+14

SNH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SNB -1.9E+14 -2.0E+14 -1.6E+14 -2.6E+14 -2.0E+14 -1.2E+14 -2.1E+14 -1.1E+14

MKC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKH -1.5E+14 -1.7E+14 -2.3E+14 -2.1E+14 -1.5E+14 -1.1E+14 -1.7E+14 -1.5E+14

MKB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MNC -1.5E+14 -2.4E+14 -2.0E+14 -2.5E+14 -1.5E+14 -1.3E+14 -2.3E+14 -1.2E+14

MNH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MNB -1.8E+14 -2.2E+14 -2.2E+14 -2.2E+14 -1.4E+14 -1.4E+14 -2.5E+14 -1.3E+14

9 10 11 12 13 14 15

SKC 6.2E-316 6.2E-316 6.2E-316 6.2E-316 6.2E-316 6.2E-316 6.2E-316

SKH -2.0E+14 -1.5E+14 -2.1E+14 -1.6E+14 -1.9E+14 -1.8E+14 -1.8E+14

SKB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SNC -2.6E+14 -1.4E+14 -1.7E+14 -1.2E+14 -2.5E+14 -1.6E+14 -2.3E+14

SNH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SNB -1.7E+14 -1.0E+14 -1.6E+14 -1.7E+14 -2.4E+14 -2.1E+14 -1.9E+14

MKC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKH -2.2E+14 -1.4E+14 -2.0E+14 -1.6E+14 -1.8E+14 -2.0E+14 -1.7E+14

MKB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MNC -2.1E+14 -9.8E+13 -1.7E+14 -1.3E+14 -1.7E+14 -1.7E+14 -2.4E+14

MNH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MNB -2.5E+14 -1.3E+14 -1.4E+14 -1.2E+14 -2.6E+14 -1.9E+14 -2.0E+14

237

Table 49: Learned policy for G CO b by turn for 15 turn UrbanSim game using SARSA(λ).

STRATEGY 1 2 3 4 5 6 7 8

SKC 6.3E-316 5.1E-316 4.8E-316 4.9E-316 4.9E-316 6.2E-316 4.9E-316 2.0E-316

SKH -1.2E+12 -1.1E+12 -1.2E+12 -6.6E+11 -6.5E+11 -1.6E+12 -5.4E+11 -1.7E+12

SKB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SNC -1.2E+12 -1.1E+12 -1.2E+12 -6.7E+11 -6.5E+11 -1.6E+12 -5.3E+11 -1.7E+12

SNH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SNB -1.2E+12 -1.1E+12 -1.2E+12 -6.5E+11 -6.5E+11 6.1E+14 -5.2E+11 -1.7E+12

MKC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKH 8.7E+14 -1.1E+12 -1.2E+12 -6.7E+11 -6.5E+11 -1.7E+12 -5.3E+11 5.8E+14

MKB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MNC -1.2E+12 9.0E+14 -1.2E+12 -6.6E+11 -6.5E+11 -1.6E+12 -5.4E+11 -1.8E+12

MNH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MNB -1.2E+12 -1.1E+12 -1.2E+12 -6.6E+11 -6.4E+11 -1.7E+12 -5.3E+11 -1.7E+12

9 10 11 12 13 14 15

SKC 6.2E-316 6.2E-316 6.2E-316 6.2E-316 6.2E-316 6.2E-316 6.2E-316

SKH -5.4E+11 -1.4E+12 -8.7E+11 -1.8E+12 -1.1E+12 -1.1E+12 -1.1E+12

SKB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SNC -5.3E+11 -1.4E+12 -8.7E+11 -1.8E+12 -1.1E+12 -1.1E+12 -1.1E+12

SNH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SNB -5.3E+11 -1.4E+12 -8.6E+11 -1.8E+12 -1.1E+12 -1.1E+12 -1.1E+12

MKC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKH 9.6E+14 -1.4E+12 -8.6E+11 -1.8E+12 -1.1E+12 -1.1E+12 -1.1E+12

MKB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MNC -5.3E+11 -1.4E+12 -8.7E+11 -1.8E+12 9.7E+14 -1.1E+12 -1.1E+12

MNH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MNB -5.4E+11 5.8E+14 -8.7E+11 -1.8E+12 -1.1E+12 -1.1E+12 -1.1E+12

238

Table 50: Learned policy for H CO a by turn for 15 turn UrbanSim game using SARSA(λ).

STRATEGY 1 2 3 4 5 6 7 8

SKC 6.3E-316 5.1E-316 4.8E-316 4.9E-316 4.9E-316 6.2E-316 4.9E-316 2.0E-316

SKH -1.1E+14 -1.2E+14 -1.1E+14 -1.3E+14 -6.0E+13 -5.8E+13 -1.8E+14 -4.4E+13

SKB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SNC -1.1E+14 -1.2E+14 -1.1E+14 -1.3E+14 -6.1E+13 -5.9E+13 -1.7E+14 -4.4E+13

SNH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SNB -1.1E+14 -1.2E+14 -1.1E+14 -1.3E+14 -6.0E+13 -5.9E+13 -1.8E+14 -4.4E+13

MKC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKH -1.1E+14 -1.2E+14 -1.1E+14 -1.3E+14 -2.2E+13 -5.8E+13 -1.6E+14 -4.4E+13

MKB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MNC -1.1E+14 -1.2E+14 -1.1E+14 -1.3E+14 -5.9E+13 -5.9E+13 -1.8E+14 -4.4E+13

MNH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MNB -1.1E+14 -1.2E+14 -1.1E+14 -1.3E+14 -6.1E+13 -5.9E+13 -1.7E+14 -4.4E+13

9 10 11 12 13 14 15

SKC 6.2E-316 6.2E-316 6.2E-316 6.2E-316 6.2E-316 6.2E-316 6.2E-316

SKH -1.9E+14 -4.4E+13 -1.4E+14 -8.2E+13 -1.8E+14 -1.1E+14 -1.2E+14

SKB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SNC -1.7E+14 -4.4E+13 -1.6E+14 -8.1E+13 -1.9E+14 -1.0E+14 -1.2E+14

SNH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SNB -1.8E+14 -4.4E+13 -1.6E+14 -8.2E+13 -1.8E+14 -1.1E+14 -1.1E+14

MKC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKH -1.8E+14 -4.4E+13 -1.6E+14 -7.1E+13 -2.0E+14 -1.1E+14 -1.2E+14

MKB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MNC -1.7E+14 -4.4E+13 -1.5E+14 -8.2E+13 -1.8E+14 -1.1E+14 -1.2E+14

MNH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MNB -1.7E+14 -4.4E+13 -1.6E+14 -8.2E+13 -2.0E+14 -1.1E+14 -1.2E+14

239

Table 51: Learned policy for QRF by turn for 15 turn UrbanSim game using SARSA(λ).

STRATEGY 1 2 3 4 5 6 7 8

SKC 6.3E-316 5.1E-316 -2.6E+14 -2.4E+14 -2.0E+14 -1.7E+14 -3.0E+14 -1.3E+14

SKH 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316

SKB -2.4E+14 -2.5E+14 -2.6E+14 -2.4E+14 -1.6E+14 -1.6E+14 -2.9E+14 -1.4E+14

SNC 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316

SNH -2.3E+14 -2.4E+14 -2.4E+14 -2.8E+14 -2.0E+14 -1.6E+14 -2.4E+14 -1.5E+14

SNB 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316

MKC -2.1E+14 -2.8E+14 -2.7E+14 -2.3E+14 -1.7E+14 -1.6E+14 -2.4E+14 -1.4E+14

MKH 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316

MKB -2.4E+14 -2.7E+14 -2.5E+14 -2.6E+14 -1.7E+14 -1.8E+14 -2.5E+14 -1.5E+14

MNC 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316

MNH -2.1E+14 -2.3E+14 -2.7E+14 -2.7E+14 -1.8E+14 -1.7E+14 -2.7E+14 -1.4E+14

MNB 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316

9 10 11 12 13 14 15

SKC -2.4E+14 -1.4E+14 -2.8E+14 -2.0E+14 -3.2E+14 -2.5E+14 -2.5E+14

SKH 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316

SKB -2.5E+14 -1.5E+14 -2.1E+14 -2.2E+14 -2.6E+14 -2.8E+14 -2.7E+14

SNC 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316

SNH -2.7E+14 -1.6E+14 -2.6E+14 -1.8E+14 -2.5E+14 -2.7E+14 -2.2E+14

SNB 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316

MKC -3.0E+14 -1.4E+14 -2.1E+14 -2.1E+14 -3.2E+14 -2.3E+14 -2.8E+14

MKH 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316

MKB -3.0E+14 -1.3E+14 -2.5E+14 -1.9E+14 -2.9E+14 -2.2E+14 -2.2E+14

MNC 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316

MNH -2.9E+14 -1.4E+14 -2.3E+14 -1.7E+14 -2.8E+14 -2.4E+14 -2.4E+14

MNB 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316 6.3E-316

240

Table 52: Learned policy for H CO b by turn for 15 turn UrbanSim game using SARSA(λ).

STRATEGY 1 2 3 4 5 6 7 8

SKC 6.3E-316 5.1E-316 4.8E-316 4.9E-316 4.9E-316 6.2E-316 4.9E-316 2.0E-316

SKH -1.1E+10 -1.9E+13 -7.1E+09 -1.8E+13 -1.6E+13 -6.1E+09 -2.5E+13 -6.1E+09

SKB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SNC -1.1E+10 -1.2E+10 -7.3E+09 -1.9E+13 -1.3E+13 -6.1E+09 -4.0E+13 -6.1E+09

SNH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SNB -1.1E+10 -1.2E+10 -7.2E+09 -3.9E+13 -1.3E+13 -6.1E+09 -2.7E+13 3.3E+14

MKC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKH -1.1E+10 -1.2E+10 -7.2E+09 -1.7E+13 -1.5E+13 3.0E+14 -3.4E+13 -6.1E+09

MKB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MNC -1.1E+10 -1.2E+10 -7.2E+09 -1.6E+13 -1.2E+13 -6.1E+09 -2.0E+13 -6.2E+09

MNH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MNB 3.0E+12 -1.2E+10 -7.2E+09 -1.5E+13 -1.9E+13 -6.1E+09 -3.0E+13 -6.1E+09

9 10 11 12 13 14 15

SKC 6.2E-316 6.2E-316 6.2E-316 6.2E-316 6.2E-316 6.2E-316 6.2E-316

SKH -2.3E+13 -9.0E+09 -1.8E+13 -1.1E+10 -1.2E+13 -1.1E+10 -1.1E+10

SKB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SNC -3.7E+13 -8.9E+09 -1.6E+10 -1.1E+10 -2.0E+13 -1.1E+10 -1.1E+10

SNH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SNB -2.9E+13 -8.8E+09 -1.5E+13 -1.1E+10 -1.1E+10 -1.1E+10 -1.1E+10

MKC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKH -3.9E+13 -8.9E+09 -1.7E+13 -1.1E+10 -1.1E+10 -1.0E+10 -1.1E+10

MKB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MNC -4.1E+13 -9.0E+09 -1.6E+10 3.1E+14 -1.1E+10 -1.1E+10 -2.0E+13

MNH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MNB -3.1E+13 -8.9E+09 -1.6E+10 -1.1E+10 -1.1E+10 -1.1E+10 -2.1E+13

241

Table 53: Learned policy for Battalion Commander by turn for 15 turn UrbanSim game

using DQ-C, Boltzmann.

STRATEGY 1 2 3 4 5 6 7 8

SKC 9.1E-316 9.5E-316 1.4E-94 1.3E-76 7.6E-96 4.8E+228 5.0E+223 2.2E-57

SKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SKB 1.3E-76 7.6E-96 4.8E+228 5.0E+223 8.0E-72 9.9E-96 4.0E+252 2.3E+15

SNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SNH 3.4E-53 3.2E+160 1.8E-152 2.6E+180 1.2E-76 1.1E-95 1.2E+214 1.3E+219

SNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKC 2.6E+180 7.6E-96 1.1E-42 2.9E+161 1.4E+219 8.1E-72 1.3E-76 7.6E-96

MKH 2.5E+02 0.0E+00 0.0E+00 0.0E+00 2.6E+02 0.0E+00 0.0E+00 0.0E+00

MKB 9.3E+252 9.1E+227 1.4E-94 1.3E-76 7.6E-96 4.8E+228 5.0E+223 9.6E-48

MNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MNH 6.0E+175 9.7E-72 4.1E-38 9.3E+252 9.1E+227 1.4E-94 1.0E-42 6.8E-38

MNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 2.7E+02

9 10 11 12 13 14 15

SKC 4.1E-38 9.3E+252 9.1E+227 1.4E-94 1.3E-76 7.6E-96 4.8E+228

SKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SKB 1.1E+243 5.2E-67 3.2E-57 4.1E-38 9.3E+252 9.1E+227 1.4E-94

SNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 3.1E+02

SNH 9.7E-72 3.4E-53 3.2E+160 1.8E-152 2.6E+180 1.2E-76 1.1E-95

SNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKC 4.8E+228 5.0E+223 1.2E-76 4.1E-38 9.3E+252 9.1E+227 1.4E-94

MKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKB 4.1E-38 9.3E+252 9.1E+227 1.4E-94 1.3E-76 7.6E-96 4.8E+228

MNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MNH 1.2E-95 1.2E+214 1.3E+219 4.2E-62 3.4E-53 3.2E+160 1.8E-152

MNB 0.0E+00 0.0E+00 2.9E+02 0.0E+00 0.0E+00 0.0E+00 0.0E+00

242

Table 54: Learned policy for CA unit by turn for 15 turn UrbanSim game using DQ-C,

Boltzmann.

STRATEGY 1 2 3 4 5 6 7 8

SKC 9.1E-316 9.5E-316 1.4E-94 1.3E-76 7.6E-96 4.8E+228 5.0E+223 2.2E-57

SKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SKB 1.3E-76 7.6E-96 4.8E+228 5.0E+223 8.0E-72 9.9E-96 4.0E+252 2.3E+15

SNC 0.0E+00 2.5E+02 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SNH 3.4E-53 3.2E+160 1.8E-152 2.6E+180 1.2E-76 1.1E-95 1.2E+214 1.3E+219

SNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 2.7E+02 0.0E+00

MKC 2.6E+180 7.6E-96 1.1E-42 2.9E+161 1.4E+219 8.1E-72 1.3E-76 7.6E-96

MKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 2.6E+02 0.0E+00 0.0E+00

MKB 9.3E+252 9.1E+227 1.4E-94 1.3E-76 7.6E-96 4.8E+228 5.0E+223 9.6E-48

MNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MNH 6.0E+175 9.7E-72 4.1E-38 9.3E+252 9.1E+227 1.4E-94 1.0E-42 6.8E-38

MNB 0.0E+00 0.0E+00 2.6E+02 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

9 10 11 12 13 14 15

SKC 4.1E-38 9.3E+252 9.1E+227 1.4E-94 1.3E-76 7.6E-96 4.8E+228

SKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SKB 1.1E+243 5.2E-67 3.2E-57 4.1E-38 9.3E+252 9.1E+227 1.4E-94

SNC 0.0E+00 0.0E+00 0.0E+00 3.0E+02 0.0E+00 0.0E+00 0.0E+00

SNH 9.7E-72 3.4E-53 3.2E+160 1.8E-152 2.6E+180 1.2E-76 1.1E-95

SNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKC 4.8E+228 5.0E+223 1.2E-76 4.1E-38 9.3E+252 9.1E+227 1.4E-94

MKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKB 4.1E-38 9.3E+252 9.1E+227 1.4E-94 1.3E-76 7.6E-96 4.8E+228

MNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MNH 1.2E-95 1.2E+214 1.3E+219 4.2E-62 3.4E-53 3.2E+160 1.8E-152

MNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

243

Table 55: Learned policy for E CO a by turn for 15 turn UrbanSim game using DQ-C,

Boltzmann.

STRATEGY 1 2 3 4 5 6 7 8

SKC 9.1E-316 9.5E-316 1.4E-94 1.3E-76 7.6E-96 4.8E+228 5.0E+223 2.2E-57

SKH 0.0E+00 2.5E+02 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SKB 1.3E-76 7.6E-96 4.8E+228 5.0E+223 8.0E-72 9.9E-96 4.0E+252 2.3E+15

SNC 0.0E+00 0.0E+00 0.0E+00 2.6E+02 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SNH 3.4E-53 3.2E+160 1.8E-152 2.6E+180 1.2E-76 1.1E-95 1.2E+214 1.3E+219

SNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKC 2.6E+180 7.6E-96 1.1E-42 2.9E+161 1.4E+219 8.1E-72 1.3E-76 7.6E-96

MKH 0.0E+00 0.0E+00 2.6E+02 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKB 9.3E+252 9.1E+227 1.4E-94 1.3E-76 7.6E-96 4.8E+228 5.0E+223 9.6E-48

MNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 2.7E+02 0.0E+00

MNH 6.0E+175 9.7E-72 4.1E-38 9.3E+252 9.1E+227 1.4E-94 1.0E-42 6.8E-38

MNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

9 10 11 12 13 14 15

SKC 4.1E-38 9.3E+252 9.1E+227 1.4E-94 1.3E-76 7.6E-96 4.8E+228

SKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SKB 1.1E+243 5.2E-67 3.2E-57 4.1E-38 9.3E+252 9.1E+227 1.4E-94

SNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 3.0E+02 3.0E+02 0.0E+00

SNH 9.7E-72 3.4E-53 3.2E+160 1.8E-152 2.6E+180 1.2E-76 1.1E-95

SNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKC 4.8E+228 5.0E+223 1.2E-76 4.1E-38 9.3E+252 9.1E+227 1.4E-94

MKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKB 4.1E-38 9.3E+252 9.1E+227 1.4E-94 1.3E-76 7.6E-96 4.8E+228

MNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MNH 1.2E-95 1.2E+214 1.3E+219 4.2E-62 3.4E-53 3.2E+160 1.8E-152

MNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

244

Table 56: Learned policy for E CO b by turn for 15 turn UrbanSim game using DQ-C,

Boltzmann.

STRATEGY 1 2 3 4 5 6 7 8

SKC 9.1E-316 9.5E-316 1.4E-94 1.3E-76 7.6E-96 4.8E+228 5.0E+223 2.2E-57

SKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SKB 1.3E-76 7.6E-96 4.8E+228 5.0E+223 8.0E-72 9.9E-96 4.0E+252 2.3E+15

SNC 0.0E+00 0.0E+00 0.0E+00 2.6E+02 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SNH 3.4E-53 3.2E+160 1.8E-152 2.6E+180 1.2E-76 1.1E-95 1.2E+214 1.3E+219

SNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 2.7E+02 0.0E+00

MKC 2.6E+180 7.6E-96 1.1E-42 2.9E+161 1.4E+219 8.1E-72 1.3E-76 7.6E-96

MKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 2.6E+02 0.0E+00 0.0E+00 0.0E+00

MKB 9.3E+252 9.1E+227 1.4E-94 1.3E-76 7.6E-96 4.8E+228 5.0E+223 9.6E-48

MNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MNH 6.0E+175 9.7E-72 4.1E-38 9.3E+252 9.1E+227 1.4E-94 1.0E-42 6.8E-38

MNB 2.5E+02 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

9 10 11 12 13 14 15

SKC 4.1E-38 9.3E+252 9.1E+227 1.4E-94 1.3E-76 7.6E-96 4.8E+228

SKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SKB 1.1E+243 5.2E-67 3.2E-57 4.1E-38 9.3E+252 9.1E+227 1.4E-94

SNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 3.1E+02

SNH 9.7E-72 3.4E-53 3.2E+160 1.8E-152 2.6E+180 1.2E-76 1.1E-95

SNB 0.0E+00 2.8E+02 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKC 4.8E+228 5.0E+223 1.2E-76 4.1E-38 9.3E+252 9.1E+227 1.4E-94

MKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKB 4.1E-38 9.3E+252 9.1E+227 1.4E-94 1.3E-76 7.6E-96 4.8E+228

MNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 3.0E+02 0.0E+00

MNH 1.2E-95 1.2E+214 1.3E+219 4.2E-62 3.4E-53 3.2E+160 1.8E-152

MNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

245

Table 57: Learned policy for F CO a by turn for 15 turn UrbanSim game using DQ-C,

Boltzmann.

STRATEGY 1 2 3 4 5 6 7 8

SKC 6.4E-316 9.5E-316 1.4E-94 1.3E-76 7.6E-96 4.8E+228 5.0E+223 2.2E-57

SKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SKB 1.3E-76 7.6E-96 4.8E+228 5.0E+223 8.0E-72 9.9E-96 4.0E+252 2.3E+15

SNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SNH 3.4E-53 3.2E+160 1.8E-152 2.6E+180 1.2E-76 1.1E-95 1.2E+214 1.3E+219

SNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 2.6E+02 0.0E+00 0.0E+00 0.0E+00

MKC 2.6E+180 7.6E-96 1.1E-42 2.9E+161 1.4E+219 8.1E-72 1.3E-76 7.6E-96

MKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 2.7E+02

MKB 9.3E+252 9.1E+227 1.4E-94 1.3E-76 7.6E-96 4.8E+228 5.0E+223 9.6E-48

MNC 0.0E+00 2.5E+02 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MNH 6.0E+175 9.7E-72 4.1E-38 9.3E+252 9.1E+227 1.4E-94 1.0E-42 6.8E-38

MNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

9 10 11 12 13 14 15

SKC 4.1E-38 9.3E+252 9.1E+227 1.4E-94 1.3E-76 7.6E-96 4.8E+228

SKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SKB 1.1E+243 5.2E-67 3.2E-57 4.1E-38 9.3E+252 9.1E+227 1.4E-94

SNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 3.0E+02 0.0E+00 0.0E+00

SNH 9.7E-72 3.4E-53 3.2E+160 1.8E-152 2.6E+180 1.2E-76 1.1E-95

SNB 2.8E+02 2.8E+02 2.9E+02 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKC 4.8E+228 5.0E+223 1.2E-76 4.1E-38 9.3E+252 9.1E+227 1.4E-94

MKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKB 4.1E-38 9.3E+252 9.1E+227 1.4E-94 1.3E-76 7.6E-96 4.8E+228

MNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MNH 1.2E-95 1.2E+214 1.3E+219 4.2E-62 3.4E-53 3.2E+160 1.8E-152

MNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 3.1E+02

246

Table 58: Learned policy for F CO b by turn for 15 turn UrbanSim game using DQ-C,

Boltzmann.

STRATEGY 1 2 3 4 5 6 7 8

SKC 6.4E-316 9.5E-316 1.4E-94 1.3E-76 7.6E-96 4.8E+228 5.0E+223 2.2E-57

SKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SKB 1.3E-76 7.6E-96 4.8E+228 5.0E+223 8.0E-72 9.9E-96 4.0E+252 2.3E+15

SNC 0.0E+00 0.0E+00 0.0E+00 2.6E+02 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SNH 3.4E-53 3.2E+160 1.8E-152 2.6E+180 1.2E-76 1.1E-95 1.2E+214 1.3E+219

SNB 0.0E+00 0.0E+00 2.6E+02 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKC 2.6E+180 7.6E-96 1.1E-42 2.9E+161 1.4E+219 8.1E-72 1.3E-76 7.6E-96

MKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 2.6E+02 0.0E+00 2.7E+02 2.7E+02

MKB 9.3E+252 9.1E+227 1.4E-94 1.3E-76 7.6E-96 4.8E+228 5.0E+223 9.6E-48

MNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MNH 6.0E+175 9.7E-72 4.1E-38 9.3E+252 9.1E+227 1.4E-94 1.0E-42 6.8E-38

MNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

9 10 11 12 13 14 15

SKC 4.1E-38 9.3E+252 9.1E+227 1.4E-94 1.3E-76 7.6E-96 4.8E+228

SKH 2.8E+02 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SKB 1.1E+243 5.2E-67 3.2E-57 4.1E-38 9.3E+252 9.1E+227 1.4E-94

SNC 0.0E+00 0.0E+00 0.0E+00 3.0E+02 0.0E+00 0.0E+00 0.0E+00

SNH 9.7E-72 3.4E-53 3.2E+160 1.8E-152 2.6E+180 1.2E-76 1.1E-95

SNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKC 4.8E+228 5.0E+223 1.2E-76 4.1E-38 9.3E+252 9.1E+227 1.4E-94

MKH 0.0E+00 2.8E+02 0.0E+00 0.0E+00 0.0E+00 0.0E+00 3.1E+02

MKB 4.1E-38 9.3E+252 9.1E+227 1.4E-94 1.3E-76 7.6E-96 4.8E+228

MNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MNH 1.2E-95 1.2E+214 1.3E+219 4.2E-62 3.4E-53 3.2E+160 1.8E-152

MNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

247

Table 59: Learned policy for G CO a by turn for 15 turn UrbanSim game using DQ-C,

Boltzmann.

STRATEGY 1 2 3 4 5 6 7 8

SKC 6.4E-316 9.5E-316 1.4E-94 1.3E-76 7.6E-96 4.8E+228 5.0E+223 2.2E-57

SKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 2.7E+02 0.0E+00

SKB 1.3E-76 7.6E-96 4.8E+228 5.0E+223 8.0E-72 9.9E-96 4.0E+252 2.3E+15

SNC 0.0E+00 0.0E+00 2.6E+02 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SNH 3.4E-53 3.2E+160 1.8E-152 2.6E+180 1.2E-76 1.1E-95 1.2E+214 1.3E+219

SNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKC 2.6E+180 7.6E-96 1.1E-42 2.9E+161 1.4E+219 8.1E-72 1.3E-76 7.6E-96

MKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKB 9.3E+252 9.1E+227 1.4E-94 1.3E-76 7.6E-96 4.8E+228 5.0E+223 9.6E-48

MNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 2.6E+02 0.0E+00 0.0E+00

MNH 6.0E+175 9.7E-72 4.1E-38 9.3E+252 9.1E+227 1.4E-94 1.0E-42 6.8E-38

MNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 2.7E+02

9 10 11 12 13 14 15

SKC 4.1E-38 9.3E+252 9.1E+227 1.4E-94 1.3E-76 7.6E-96 4.8E+228

SKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SKB 1.1E+243 5.2E-67 3.2E-57 4.1E-38 9.3E+252 9.1E+227 1.4E-94

SNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 3.1E+02

SNH 9.7E-72 3.4E-53 3.2E+160 1.8E-152 2.6E+180 1.2E-76 1.1E-95

SNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKC 4.8E+228 5.0E+223 1.2E-76 4.1E-38 9.3E+252 9.1E+227 1.4E-94

MKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKB 4.1E-38 9.3E+252 9.1E+227 1.4E-94 1.3E-76 7.6E-96 4.8E+228

MNC 0.0E+00 0.0E+00 0.0E+00 3.0E+02 0.0E+00 0.0E+00 0.0E+00

MNH 1.2E-95 1.2E+214 1.3E+219 4.2E-62 3.4E-53 3.2E+160 1.8E-152

MNB 0.0E+00 2.8E+02 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

248

Table 60: Learned policy for G CO b by turn for 15 turn UrbanSim game using DQ-C,

Boltzmann.

STRATEGY 1 2 3 4 5 6 7 8

SKC 6.4E-316 9.5E-316 1.4E-94 1.3E-76 7.6E-96 4.8E+228 5.0E+223 2.2E-57

SKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SKB 1.3E-76 7.6E-96 4.8E+228 5.0E+223 8.0E-72 9.9E-96 4.0E+252 2.3E+15

SNC 0.0E+00 2.5E+02 0.0E+00 2.6E+02 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SNH 3.4E-53 3.2E+160 1.8E-152 2.6E+180 1.2E-76 1.1E-95 1.2E+214 1.3E+219

SNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKC 2.6E+180 7.6E-96 1.1E-42 2.9E+161 1.4E+219 8.1E-72 1.3E-76 7.6E-96

MKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKB 9.3E+252 9.1E+227 1.4E-94 1.3E-76 7.6E-96 4.8E+228 5.0E+223 9.6E-48

MNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MNH 6.0E+175 9.7E-72 4.1E-38 9.3E+252 9.1E+227 1.4E-94 1.0E-42 6.8E-38

MNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

9 10 11 12 13 14 15

SKC 4.1E-38 9.3E+252 9.1E+227 1.4E-94 1.3E-76 7.6E-96 4.8E+228

SKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SKB 1.1E+243 5.2E-67 3.2E-57 4.1E-38 9.3E+252 9.1E+227 1.4E-94

SNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SNH 9.7E-72 3.4E-53 3.2E+160 1.8E-152 2.6E+180 1.2E-76 1.1E-95

SNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKC 4.8E+228 5.0E+223 1.2E-76 4.1E-38 9.3E+252 9.1E+227 1.4E-94

MKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKB 4.1E-38 9.3E+252 9.1E+227 1.4E-94 1.3E-76 7.6E-96 4.8E+228

MNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MNH 1.2E-95 1.2E+214 1.3E+219 4.2E-62 3.4E-53 3.2E+160 1.8E-152

MNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

249

Table 61: Learned policy for H CO a by turn for 15 turn UrbanSim game using DQ-C,

Boltzmann.

STRATEGY 1 2 3 4 5 6 7 8

SKC 6.4E-316 9.5E-316 1.4E-94 1.3E-76 7.6E-96 4.8E+228 5.0E+223 2.2E-57

SKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SKB 1.3E-76 7.6E-96 4.8E+228 5.0E+223 8.0E-72 9.9E-96 4.0E+252 2.3E+15

SNC 0.0E+00 2.5E+02 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SNH 3.4E-53 3.2E+160 1.8E-152 2.6E+180 1.2E-76 1.1E-95 1.2E+214 1.3E+219

SNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKC 2.6E+180 7.6E-96 1.1E-42 2.9E+161 1.4E+219 8.1E-72 1.3E-76 7.6E-96

MKH 2.5E+02 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKB 9.3E+252 9.1E+227 1.4E-94 1.3E-76 7.6E-96 4.8E+228 5.0E+223 9.6E-48

MNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MNH 6.0E+175 9.7E-72 4.1E-38 9.3E+252 9.1E+227 1.4E-94 1.0E-42 6.8E-38

MNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 2.6E+02 0.0E+00 0.0E+00 2.7E+02

9 10 11 12 13 14 15

SKC 4.1E-38 9.3E+252 9.1E+227 1.4E-94 1.3E-76 7.6E-96 4.8E+228

SKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SKB 1.1E+243 5.2E-67 3.2E-57 4.1E-38 9.3E+252 9.1E+227 1.4E-94

SNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SNH 9.7E-72 3.4E-53 3.2E+160 1.8E-152 2.6E+180 1.2E-76 1.1E-95

SNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKC 4.8E+228 5.0E+223 1.2E-76 4.1E-38 9.3E+252 9.1E+227 1.4E-94

MKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKB 4.1E-38 9.3E+252 9.1E+227 1.4E-94 1.3E-76 7.6E-96 4.8E+228

MNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MNH 1.2E-95 1.2E+214 1.3E+219 4.2E-62 3.4E-53 3.2E+160 1.8E-152

MNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

250

Table 62: Learned policy for H CO b by turn for 15 turn UrbanSim game using DQ-C,

Boltzmann.

STRATEGY 1 2 3 4 5 6 7 8

SKC 6.4E-316 9.5E-316 1.4E-94 1.3E-76 7.6E-96 4.8E+228 5.0E+223 2.2E-57

SKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 2.6E+02 0.0E+00 0.0E+00 0.0E+00

SKB 1.3E-76 7.6E-96 4.8E+228 5.0E+223 8.0E-72 9.9E-96 4.0E+252 2.3E+15

SNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SNH 3.4E-53 3.2E+160 1.8E-152 2.6E+180 1.2E-76 1.1E-95 1.2E+214 1.3E+219

SNB 2.5E+02 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKC 2.6E+180 7.6E-96 1.1E-42 2.9E+161 1.4E+219 8.1E-72 1.3E-76 7.6E-96

MKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKB 9.3E+252 9.1E+227 1.4E-94 1.3E-76 7.6E-96 4.8E+228 5.0E+223 9.6E-48

MNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 2.7E+02

MNH 6.0E+175 9.7E-72 4.1E-38 9.3E+252 9.1E+227 1.4E-94 1.0E-42 6.8E-38

MNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 2.7E+02 0.0E+00

9 10 11 12 13 14 15

SKC 4.1E-38 9.3E+252 9.1E+227 1.4E-94 1.3E-76 7.6E-96 4.8E+228

SKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 3.1E+02

SKB 1.1E+243 5.2E-67 3.2E-57 4.1E-38 9.3E+252 9.1E+227 1.4E-94

SNC 0.0E+00 0.0E+00 2.9E+02 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SNH 9.7E-72 3.4E-53 3.2E+160 1.8E-152 2.6E+180 1.2E-76 1.1E-95

SNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 3.0E+02 0.0E+00 0.0E+00

MKC 4.8E+228 5.0E+223 1.2E-76 4.1E-38 9.3E+252 9.1E+227 1.4E-94

MKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKB 4.1E-38 9.3E+252 9.1E+227 1.4E-94 1.3E-76 7.6E-96 4.8E+228

MNC 2.8E+02 0.0E+00 0.0E+00 0.0E+00 0.0E+00 3.0E+02 0.0E+00

MNH 1.2E-95 1.2E+214 1.3E+219 4.2E-62 3.4E-53 3.2E+160 1.8E-152

MNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

251

Table 63: Learned policy for QRF by turn for 15 turn UrbanSim game using DQ-C, Boltz-

mann.

STRATEGY 1 2 3 4 5 6 7 8

SKC 6.4E-316 9.5E-316 1.4E-94 1.3E-76 7.6E-96 4.8E+228 5.0E+223 2.2E-57

SKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SKB 1.3E-76 7.6E-96 4.8E+228 5.0E+223 8.0E-72 9.9E-96 4.0E+252 2.3E+15

SNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SNH 3.4E-53 3.2E+160 1.8E-152 2.6E+180 1.2E-76 1.1E-95 1.2E+214 1.3E+219

SNB 2.5E+02 0.0E+00 2.6E+02 0.0E+00 2.6E+02 0.0E+00 2.7E+02 0.0E+00

MKC 2.6E+180 7.6E-96 1.1E-42 2.9E+161 1.4E+219 8.1E-72 1.3E-76 7.6E-96

MKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKB 9.3E+252 9.1E+227 1.4E-94 1.3E-76 7.6E-96 4.8E+228 5.0E+223 9.6E-48

MNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 2.6E+02 0.0E+00 2.7E+02

MNH 6.0E+175 9.7E-72 4.1E-38 9.3E+252 9.1E+227 1.4E-94 1.0E-42 6.8E-38

MNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

9 10 11 12 13 14 15

SKC 4.1E-38 9.3E+252 9.1E+227 1.4E-94 1.3E-76 7.6E-96 4.8E+228

SKH 2.8E+02 0.0E+00 0.0E+00 3.0E+02 0.0E+00 0.0E+00 0.0E+00

SKB 1.1E+243 5.2E-67 3.2E-57 4.1E-38 9.3E+252 9.1E+227 1.4E-94

SNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 3.0E+02 0.0E+00

SNH 9.7E-72 3.4E-53 3.2E+160 1.8E-152 2.6E+180 1.2E-76 1.1E-95

SNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKC 4.8E+228 5.0E+223 1.2E-76 4.1E-38 9.3E+252 9.1E+227 1.4E-94

MKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 3.0E+02 0.0E+00 0.0E+00

MKB 4.1E-38 9.3E+252 9.1E+227 1.4E-94 1.3E-76 7.6E-96 4.8E+228

MNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MNH 1.2E-95 1.2E+214 1.3E+219 4.2E-62 3.4E-53 3.2E+160 1.8E-152

MNB 0.0E+00 0.0E+00 2.9E+02 0.0E+00 0.0E+00 0.0E+00 0.0E+00

252

Table 64: Learned policy for Battalion Commander by turn for 15 turn UrbanSim game

using Q(λ), Boltzmann.

STRATEGY 1 2 3 4 5 6 7 8

SKC 6.3E-316 4.7E-316 1.2E+166 2.4E+232 1.4E-303 2.0E-316 6.0E-154 1.1E-152

SKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SKB 1.8E-152 1.7E+214 2.5E-154 1.4E+219 1.9E+219 4.7E+252 7.7E+170 7.3E+223

SNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SNH 5.3E+228 3.0E+222 1.2E-259 2.1E-312 1.1E-311 2.7E-308 2.0E-309 2.1E-301

SNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKC 4.6E+228 1.3E-152 2.0E+161 3.3E+257 2.5E+198 1.7E-152 1.2E+214 4.0E+252

MKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKB 4.5E+257 5.8E+180 5.8E+252 1.8E+190 1.3E+213 5.9E+199 2.5E-154 1.7E+214

MNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MNH 1.8E-313 1.4E-308 9.9E+86 7.2E-311 7.1E-235 3.5E-313 2.5E-308 9.9E+86

MNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

STRATEGY 9 10 11 12 13 14 15

SKC 3.0E+180 5.0E+175 2.2E+161 9.8E+199 4.7E+257 1.9E+227 8.0E+165

SKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SKB 4.7E+164 2.1E+214 3.0E-85 6.0E-154 2.0E+267 1.7E+243 2.3E+243

SNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SNH 1.6E-309 6.7E-314 6.2E-309 1.8E+175 4.6E-314 9.9E-307 5.1E-116

SNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKC 3.0E-85 1.7E+262 3.1E+169 1.9E+214 1.8E+185 5.8E+252 2.0E+161

MKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKB 1.8E-152 6.0E+247 5.8E+180 5.3E-85 3.4E-309 6.0E+197 3.0E-311

MNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MNH 1.2E-310 2.4E-196 5.2E-313 3.7E-308 9.9E+86 1.6E-310 8.2E-158

MNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

253

Table 65: Learned policy for CA unit by turn for 15 turn UrbanSim game using Q(λ),

Boltzmann.

STRATEGY 1 2 3 4 5 6 7 8

SKC 6.3E-316 4.7E-316 1.2E+166 2.4E+232 1.4E-303 2.0E-316 6.0E-154 1.1E-152

SKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SKB 1.8E-152 1.7E+214 2.5E-154 1.4E+219 1.9E+219 4.7E+252 7.7E+170 7.3E+223

SNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SNH 5.3E+228 3.0E+222 1.2E-259 2.1E-312 1.1E-311 2.7E-308 2.0E-309 2.1E-301

SNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKC 4.6E+228 1.3E-152 2.0E+161 3.3E+257 2.5E+198 1.7E-152 1.2E+214 4.0E+252

MKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKB 4.5E+257 5.8E+180 5.8E+252 1.8E+190 1.3E+213 5.9E+199 2.5E-154 1.7E+214

MNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MNH 1.8E-313 1.4E-308 9.9E+86 7.2E-311 7.1E-235 3.5E-313 2.5E-308 9.9E+86

MNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

STRATEGY 9 10 11 12 13 14 15

SKC 3.0E+180 5.0E+175 2.2E+161 9.8E+199 4.7E+257 1.9E+227 8.0E+165

SKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SKB 4.7E+164 2.1E+214 3.0E-85 6.0E-154 2.0E+267 1.7E+243 2.3E+243

SNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SNH 1.6E-309 6.7E-314 6.2E-309 1.8E+175 4.6E-314 9.9E-307 5.1E-116

SNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKC 3.0E-85 1.7E+262 3.1E+169 1.9E+214 1.8E+185 5.8E+252 2.0E+161

MKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKB 1.8E-152 6.0E+247 5.8E+180 5.3E-85 3.4E-309 6.0E+197 3.0E-311

MNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MNH 1.2E-310 2.4E-196 5.2E-313 3.7E-308 9.9E+86 1.6E-310 8.2E-158

MNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

254

Table 66: Learned policy for E CO a by turn for 15 turn UrbanSim game using Q(λ),

Boltzmann.

STRATEGY 1 2 3 4 5 6 7 8

SKC 6.3E-316 4.7E-316 1.2E+166 2.4E+232 1.4E-303 2.0E-316 6.0E-154 1.1E-152

SKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SKB 1.8E-152 1.7E+214 2.5E-154 1.4E+219 1.9E+219 4.7E+252 7.7E+170 7.3E+223

SNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SNH 5.3E+228 3.0E+222 1.2E-259 2.1E-312 1.1E-311 2.7E-308 2.0E-309 2.1E-301

SNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKC 4.6E+228 1.3E-152 2.0E+161 3.3E+257 2.5E+198 1.7E-152 1.2E+214 4.0E+252

MKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKB 4.5E+257 5.8E+180 5.8E+252 1.8E+190 1.3E+213 5.9E+199 2.5E-154 1.7E+214

MNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MNH 1.8E-313 1.4E-308 9.9E+86 7.2E-311 7.1E-235 3.5E-313 2.5E-308 9.9E+86

MNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

STRATEGY 9 10 11 12 13 14 15

SKC 3.0E+180 5.0E+175 2.2E+161 9.8E+199 4.7E+257 1.9E+227 8.0E+165

SKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SKB 4.7E+164 2.1E+214 3.0E-85 6.0E-154 2.0E+267 1.7E+243 2.3E+243

SNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SNH 1.6E-309 6.7E-314 6.2E-309 1.8E+175 4.6E-314 9.9E-307 5.1E-116

SNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKC 3.0E-85 1.7E+262 3.1E+169 1.9E+214 1.8E+185 5.8E+252 2.0E+161

MKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKB 1.8E-152 6.0E+247 5.8E+180 5.3E-85 3.4E-309 6.0E+197 3.0E-311

MNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MNH 1.2E-310 2.4E-196 5.2E-313 3.7E-308 9.9E+86 1.6E-310 8.2E-158

MNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

255

Table 67: Learned policy for F CO a by turn for 15 turn UrbanSim game using Q(λ),

Boltzmann.

STRATEGY 1 2 3 4 5 6 7 8

SKC 6.3E-316 4.7E-316 1.2E+166 2.4E+232 1.4E-303 2.0E-316 6.0E-154 1.1E-152

SKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SKB 1.8E-152 1.7E+214 2.5E-154 1.4E+219 1.9E+219 4.7E+252 7.7E+170 7.3E+223

SNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SNH 5.3E+228 3.0E+222 1.2E-259 2.1E-312 1.1E-311 2.7E-308 2.0E-309 2.1E-301

SNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKC 4.6E+228 1.3E-152 2.0E+161 3.3E+257 2.5E+198 1.7E-152 1.2E+214 4.0E+252

MKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKB 4.5E+257 5.8E+180 5.8E+252 1.8E+190 1.3E+213 5.9E+199 2.5E-154 1.7E+214

MNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MNH 1.8E-313 1.4E-308 9.9E+86 7.2E-311 7.1E-235 3.5E-313 2.5E-308 9.9E+86

MNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

STRATEGY 9 10 11 12 13 14 15

SKC 3.0E+180 5.0E+175 2.2E+161 9.8E+199 4.7E+257 1.9E+227 8.0E+165

SKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SKB 4.7E+164 2.1E+214 3.0E-85 6.0E-154 2.0E+267 1.7E+243 2.3E+243

SNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SNH 1.6E-309 6.7E-314 6.2E-309 1.8E+175 4.6E-314 9.9E-307 5.1E-116

SNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKC 3.0E-85 1.7E+262 3.1E+169 1.9E+214 1.8E+185 5.8E+252 2.0E+161

MKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKB 1.8E-152 6.0E+247 5.8E+180 5.3E-85 3.4E-309 6.0E+197 3.0E-311

MNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MNH 1.2E-310 2.4E-196 5.2E-313 3.7E-308 9.9E+86 1.6E-310 8.2E-158

MNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

256

Table 68: Learned policy for E CO b by turn for 15 turn UrbanSim game using Q(λ),

Boltzmann.

STRATEGY 1 2 3 4 5 6 7 8

SKC 6.3E-316 6.4E-316 1.2E+166 2.4E+232 1.4E-303 2.0E-316 6.0E-154 1.1E-152

SKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SKB 1.8E-152 1.7E+214 2.5E-154 1.4E+219 1.9E+219 4.7E+252 7.7E+170 7.3E+223

SNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SNH 5.3E+228 3.0E+222 1.2E-259 2.1E-312 1.1E-311 2.7E-308 2.0E-309 2.1E-301

SNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKC 4.6E+228 1.3E-152 2.0E+161 3.3E+257 2.5E+198 1.7E-152 1.2E+214 4.0E+252

MKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKB 4.5E+257 5.8E+180 5.8E+252 1.8E+190 1.3E+213 5.9E+199 2.5E-154 1.7E+214

MNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MNH 1.8E-313 1.4E-308 9.9E+86 7.2E-311 7.1E-235 3.5E-313 2.5E-308 9.9E+86

MNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

STRATEGY 9 10 11 12 13 14 15

SKC 3.0E+180 5.0E+175 2.2E+161 9.8E+199 4.7E+257 1.9E+227 8.0E+165

SKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SKB 4.7E+164 2.1E+214 3.0E-85 6.0E-154 2.0E+267 1.7E+243 2.3E+243

SNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SNH 1.6E-309 6.7E-314 6.2E-309 1.8E+175 4.6E-314 9.9E-307 5.1E-116

SNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKC 3.0E-85 1.7E+262 3.1E+169 1.9E+214 1.8E+185 5.8E+252 2.0E+161

MKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKB 1.8E-152 6.0E+247 5.8E+180 5.3E-85 3.4E-309 6.0E+197 3.0E-311

MNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MNH 1.2E-310 2.4E-196 5.2E-313 3.7E-308 9.9E+86 1.6E-310 8.2E-158

MNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

257

Table 69: Learned policy for F CO b by turn for 15 turn UrbanSim game using Q(λ),

Boltzmann.

STRATEGY 1 2 3 4 5 6 7 8

SKC 6.3E-316 4.7E-316 1.2E+166 2.4E+232 1.4E-303 2.0E-316 6.0E-154 1.1E-152

SKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SKB 1.8E-152 1.7E+214 2.5E-154 1.4E+219 1.9E+219 4.7E+252 7.7E+170 7.3E+223

SNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SNH 5.3E+228 3.0E+222 1.2E-259 2.1E-312 1.1E-311 2.7E-308 2.0E-309 2.1E-301

SNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKC 4.6E+228 1.3E-152 2.0E+161 3.3E+257 2.5E+198 1.7E-152 1.2E+214 4.0E+252

MKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKB 4.5E+257 5.8E+180 5.8E+252 1.8E+190 1.3E+213 5.9E+199 2.5E-154 1.7E+214

MNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MNH 1.8E-313 1.4E-308 9.9E+86 7.2E-311 7.1E-235 3.5E-313 2.5E-308 9.9E+86

MNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

STRATEGY 9 10 11 12 13 14 15

SKC 3.0E+180 5.0E+175 2.2E+161 9.8E+199 4.7E+257 1.9E+227 8.0E+165

SKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SKB 4.7E+164 2.1E+214 3.0E-85 6.0E-154 2.0E+267 1.7E+243 2.3E+243

SNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SNH 1.6E-309 6.7E-314 6.2E-309 1.8E+175 4.6E-314 9.9E-307 5.1E-116

SNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKC 3.0E-85 1.7E+262 3.1E+169 1.9E+214 1.8E+185 5.8E+252 2.0E+161

MKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKB 1.8E-152 6.0E+247 5.8E+180 5.3E-85 3.4E-309 6.0E+197 3.0E-311

MNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MNH 1.2E-310 2.4E-196 5.2E-313 3.7E-308 9.9E+86 1.6E-310 8.2E-158

MNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

258

Table 70: Learned policy for G CO b by turn for 15 turn UrbanSim game using Q(λ),

Boltzmann.

STRATEGY 1 2 3 4 5 6 7 8

SKC 6.3E-316 4.7E-316 1.2E+166 2.4E+232 1.4E-303 2.0E-316 6.0E-154 1.1E-152

SKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SKB 1.8E-152 1.7E+214 2.5E-154 1.4E+219 1.9E+219 4.7E+252 7.7E+170 7.3E+223

SNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SNH 5.3E+228 3.0E+222 1.2E-259 2.1E-312 1.1E-311 2.7E-308 2.0E-309 2.1E-301

SNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKC 4.6E+228 1.3E-152 2.0E+161 3.3E+257 2.5E+198 1.7E-152 1.2E+214 4.0E+252

MKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKB 4.5E+257 5.8E+180 5.8E+252 1.8E+190 1.3E+213 5.9E+199 2.5E-154 1.7E+214

MNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MNH 1.8E-313 1.4E-308 9.9E+86 7.2E-311 7.1E-235 3.5E-313 2.5E-308 9.9E+86

MNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

STRATEGY 9 10 11 12 13 14 15

SKC 3.0E+180 5.0E+175 2.2E+161 9.8E+199 4.7E+257 1.9E+227 8.0E+165

SKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SKB 4.7E+164 2.1E+214 3.0E-85 6.0E-154 2.0E+267 1.7E+243 2.3E+243

SNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SNH 1.6E-309 6.7E-314 6.2E-309 1.8E+175 4.6E-314 9.9E-307 5.1E-116

SNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKC 3.0E-85 1.7E+262 3.1E+169 1.9E+214 1.8E+185 5.8E+252 2.0E+161

MKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKB 1.8E-152 6.0E+247 5.8E+180 5.3E-85 3.4E-309 6.0E+197 3.0E-311

MNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MNH 1.2E-310 2.4E-196 5.2E-313 3.7E-308 9.9E+86 1.6E-310 8.2E-158

MNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

259

Table 71: Learned policy for G CO a by turn for 15 turn UrbanSim game using Q(λ),

Boltzmann.

STRATEGY 1 2 3 4 5 6 7 8

SKC 6.3E-316 4.7E-316 1.2E+166 2.4E+232 1.4E-303 2.0E-316 6.0E-154 1.1E-152

SKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SKB 1.8E-152 1.7E+214 2.5E-154 1.4E+219 1.9E+219 4.7E+252 7.7E+170 7.3E+223

SNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SNH 5.3E+228 3.0E+222 1.2E-259 2.1E-312 1.1E-311 2.7E-308 2.0E-309 2.1E-301

SNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKC 4.6E+228 1.3E-152 2.0E+161 3.3E+257 2.5E+198 1.7E-152 1.2E+214 4.0E+252

MKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKB 4.5E+257 5.8E+180 5.8E+252 1.8E+190 1.3E+213 5.9E+199 2.5E-154 1.7E+214

MNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MNH 1.8E-313 1.4E-308 9.9E+86 7.2E-311 7.1E-235 3.5E-313 2.5E-308 9.9E+86

MNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

STRATEGY 9 10 11 12 13 14 15

SKC 3.0E+180 5.0E+175 2.2E+161 9.8E+199 4.7E+257 1.9E+227 8.0E+165

SKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SKB 4.7E+164 2.1E+214 3.0E-85 6.0E-154 2.0E+267 1.7E+243 2.3E+243

SNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SNH 1.6E-309 6.7E-314 6.2E-309 1.8E+175 4.6E-314 9.9E-307 5.1E-116

SNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKC 3.0E-85 1.7E+262 3.1E+169 1.9E+214 1.8E+185 5.8E+252 2.0E+161

MKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKB 1.8E-152 6.0E+247 5.8E+180 5.3E-85 3.4E-309 6.0E+197 3.0E-311

MNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MNH 1.2E-310 2.4E-196 5.2E-313 3.7E-308 9.9E+86 1.6E-310 8.2E-158

MNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

260

Table 72: Learned policy for H CO a by turn for 15 turn UrbanSim game using Q(λ),

Boltzmann.

STRATEGY 1 2 3 4 5 6 7 8

SKC 6.3E-316 6.4E-316 1.2E+166 2.4E+232 1.4E-303 2.0E-316 6.0E-154 1.1E-152

SKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SKB 1.8E-152 1.7E+214 2.5E-154 1.4E+219 1.9E+219 4.7E+252 7.7E+170 7.3E+223

SNC 0.0E+00 2.8E+02 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SNH 5.3E+228 3.0E+222 1.2E-259 2.1E-312 1.1E-311 2.7E-308 2.0E-309 2.1E-301

SNB 3.6E+02 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKC 4.6E+228 1.3E-152 2.0E+161 3.3E+257 2.5E+198 1.7E-152 1.2E+214 4.0E+252

MKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKB 4.5E+257 5.8E+180 5.8E+252 1.8E+190 1.3E+213 5.9E+199 2.5E-154 1.7E+214

MNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MNH 1.8E-313 1.4E-308 9.9E+86 7.2E-311 7.1E-235 3.5E-313 2.5E-308 9.9E+86

MNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 2.7E+02 0.0E+00 0.0E+00 2.9E+02

STRATEGY 9 10 11 12 13 14 15

SKC 3.0E+180 5.0E+175 2.2E+161 9.8E+199 4.7E+257 1.9E+227 8.0E+165

SKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SKB 4.7E+164 2.1E+214 3.0E-85 6.0E-154 2.0E+267 1.7E+243 2.3E+243

SNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SNH 1.6E-309 6.7E-314 6.2E-309 1.8E+175 4.6E-314 9.9E-307 5.1E-116

SNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKC 3.0E-85 1.7E+262 3.1E+169 1.9E+214 1.8E+185 5.8E+252 2.0E+161

MKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKB 1.8E-152 6.0E+247 5.8E+180 5.3E-85 3.4E-309 6.0E+197 3.0E-311

MNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MNH 1.2E-310 2.4E-196 5.2E-313 3.7E-308 9.9E+86 1.6E-310 8.2E-158

MNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

261

Table 73: Learned policy for H CO b by turn for 15 turn UrbanSim game using Q(λ),

Boltzmann.

STRATEGY 1 2 3 4 5 6 7 8

SKC 6.3E-316 6.4E-316 1.2E+166 2.4E+232 1.4E-303 2.0E-316 6.0E-154 1.1E-152

SKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SKB 1.8E-152 1.7E+214 2.5E-154 1.4E+219 1.9E+219 4.7E+252 7.7E+170 7.3E+223

SNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SNH 5.3E+228 3.0E+222 1.2E-259 2.1E-312 1.1E-311 2.7E-308 2.0E-309 2.1E-301

SNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKC 4.6E+228 1.3E-152 2.0E+161 3.3E+257 2.5E+198 1.7E-152 1.2E+214 4.0E+252

MKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKB 4.5E+257 5.8E+180 5.8E+252 1.8E+190 1.3E+213 5.9E+199 2.5E-154 1.7E+214

MNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MNH 1.8E-313 1.4E-308 9.9E+86 7.2E-311 7.1E-235 3.5E-313 2.5E-308 9.9E+86

MNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

STRATEGY 9 10 11 12 13 14 15

SKC 3.0E+180 5.0E+175 2.2E+161 9.8E+199 4.7E+257 1.9E+227 8.0E+165

SKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SKB 4.7E+164 2.1E+214 3.0E-85 6.0E-154 2.0E+267 1.7E+243 2.3E+243

SNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SNH 1.6E-309 6.7E-314 6.2E-309 1.8E+175 4.6E-314 9.9E-307 5.1E-116

SNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKC 3.0E-85 1.7E+262 3.1E+169 1.9E+214 1.8E+185 5.8E+252 2.0E+161

MKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKB 1.8E-152 6.0E+247 5.8E+180 5.3E-85 3.4E-309 6.0E+197 3.0E-311

MNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MNH 1.2E-310 2.4E-196 5.2E-313 3.7E-308 9.9E+86 1.6E-310 8.2E-158

MNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

262

Table 74: Learned policy for QRF by turn for 15 turn UrbanSim game using Q(λ), Boltz-

mann.

STRATEGY 1 2 3 4 5 6 7 8

SKC 6.3E-316 6.4E-316 1.2E+166 2.4E+232 1.4E-303 2.0E-316 6.0E-154 1.1E-152

SKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SKB 1.8E-152 1.7E+214 2.5E-154 1.4E+219 1.9E+219 4.7E+252 7.7E+170 7.3E+223

SNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SNH 5.3E+228 3.0E+222 1.2E-259 2.1E-312 1.1E-311 2.7E-308 2.0E-309 2.1E-301

SNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKC 4.6E+228 1.3E-152 2.0E+161 3.3E+257 2.5E+198 1.7E-152 1.2E+214 4.0E+252

MKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKB 4.5E+257 5.8E+180 5.8E+252 1.8E+190 1.3E+213 5.9E+199 2.5E-154 1.7E+214

MNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MNH 1.8E-313 1.4E-308 9.9E+86 7.2E-311 7.1E-235 3.5E-313 2.5E-308 9.9E+86

MNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

STRATEGY 9 10 11 12 13 14 15

SKC 3.0E+180 5.0E+175 2.2E+161 9.8E+199 4.7E+257 1.9E+227 8.0E+165

SKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SKB 4.7E+164 2.1E+214 3.0E-85 6.0E-154 2.0E+267 1.7E+243 2.3E+243

SNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SNH 1.6E-309 6.7E-314 6.2E-309 1.8E+175 4.6E-314 9.9E-307 5.1E-116

SNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKC 3.0E-85 1.7E+262 3.1E+169 1.9E+214 1.8E+185 5.8E+252 2.0E+161

MKH 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MKB 1.8E-152 6.0E+247 5.8E+180 5.3E-85 3.4E-309 6.0E+197 3.0E-311

MNC 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

MNH 1.2E-310 2.4E-196 5.2E-313 3.7E-308 9.9E+86 1.6E-310 8.2E-158

MNB 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

263

THIS PAGE INTENTIONALLY LEFT BLANK

264

APPENDIX H: STRATEGY LEVEL POLICIES BY ALGORITHM

URBANSIM

Table 75: Learned policy for all agents by turn for 15 turn UrbanSim game using Q(λ),

ε-greedy.

STRATEGY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

BATTALION COMMANDER MNB MNB MNB MNB MNB MNB MNB MNB MNB MNB MNB MNB MNB MNB MNB

CA UNIT MNB MNB MNB MNB MNB MNB MNB MNB MNB MNB MNB MNB MNB MNB MNB

E CO A MNB MNB MNB MNB MNB MNB MNB MNB MNB MNB MNB MNB MNB MNB MNB

E CO B MNB MNB MNB MNB MNB MNB MNB MNB MNB MNB MNB MNB MNB MNB MNB

F CO A MNB MNB MNB MNB MNB MNB MNB MNB MNB MNB MNB MNB MNB MNB MNB

F CO B MNB MNB MNB MNB MNB MNB MNB MNB MNB MNB MNB MNB MNB MNB MNB

G CO A MNB MNB MNB MNB MNB MNB MNB MNB MNB MNB MNB MNB MNB MNB MNB

G CO B MNB MNB MNB MNB MNB MNB MNB MNB MNB MNB MNB MNB MNB MNB MNB

H CO A SNH SNH SNB SNB SNH MNB MKB SKH MNB MKB SKC SNB SKH SKB SNC

H CO B SNH SNH SNB SNB SNH MNB MKB SKH MNB MKB SKC SNB SKH SKB SNC

QRF SNH SNH SNB SNB SNH MNB MKB SKH MNB MKB SKC SNB SKH SKB SNC

Table 76: Learned policy for all agents by turn for 15 turn UrbanSim game using DQ-C,

ε-greedy.

STRATEGY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

BATTALION COMMANDER MKH SNB MKH MNC SKC MNH MNH SNH SKB MNC MKH SNB SNH MNH SNC

CA UNIT SNC MKH MKH MNH MKB MKB SNC SNH MNC SKH SNH MNH SKC MKH SNH

E CO A SKH SKC SKH MKC MNB SKB MNC MNH MNB MKC MNC MKH MNH MKB SKH

E CO B SNB MKB SNC MKC SNH SNB MKB SKB SNC SNC SNB SKH MNH MKB MNB

F CO A SNB SKC SNH SKC SKB SKB SNC SNB MNH MNH MNC SNC MNC SKH MNC

F CO B SNH SKH SKC MKB SNC SKC MKB SNC SNC MNC MKB SNC SNH MKC MKB

G CO A SNB SKB MNC MKB SNH SKB MNH SNH MKC SNH SKB SKC SKC MNC SNB

G CO B SNB MNC SNB MNH SNH MKC SKC MNH SKH MKC SNB SKC SKC SNH SNH

H CO A SKC MNH MNH SNB SKH SKB SKH SNB SKB MKH SKC SNB SKC SKH SNC

H CO B SNH MNB SNB MKB SKH MKB SKC MNC SNB SKC SNB MNB SKH SKH SNH

QRF SNH SKH MNH MKC MNB MKH MNB SKH SKC SNH SKH MNH MKH MNH SKB

265

Table 77: Learned policy for all agents by turn for 15 turn UrbanSim game using DQ-C,

Boltzmann.

STRATEGY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

BATTALION COMMANDER MKH MNH MNH SKC MKH MKB MKB MNB SNH SKB MNB SKC MKB SKC SNC

CA UNIT MKB SNC MNB SKC MKB MKH SNB MNH SNH SKC MNH SNC SKC SNH MNH

E CO A SNH SKH MKH SNC SKB MKC MNC SKB MKC MNH MKB MNH SNC SNC MKB

E CO B MNB SNH MKC SNC MKH SKC SNB MNH SNH SNB SKC MNH SKB MNC SNC

F CO A MNH MNC SKC MKC SNB SKB SKC MKH SNB SNB SNB SNH SNC MKC MNB

F CO B MNH MKB SNB SNC MKH SNH MKH MKH SKH MKH SNH SNC MKB MKC MKH

G CO A SNH MKB SNC MNH SNH MNC SKH MNB SKC MNB MKC MNC SNH SKB SNC

G CO B MNH SNC MKB SNC MKB MKB SKB SNH MKC SNH SNH MKC MKB SKB MKB

H CO A MKH SNC SKC MKC MNB MKC SKC MNB MNH MNH SKB SKB MNH SKB MKB

H CO B SNB SKC MKB SKB SKH SKC MNB MNC MNC SKB SNC SKB SNB MNC SKH

QRF SNB SKB SNB SKB SNB MNC SNB MNC SKH SKB MNB SKH MKH SNC SKB

Table 78: Learned policy for all agents by turn for 15 turn UrbanSim game using

SARSA(λ), ε-greedy.

STRATEGY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

BATTALION COMMANDER MNC MNB SKC SNH SKC SNH SNB SNB SKC MKC MNC MNC SNC SNC SNC

CA UNIT MNC MNB SKC SNH MNC SNH SNB SNC SKC SKH MNC MNC SNC SNC SNC

E CO A MNC MNB SKC SNH MNC SNH SNB SNC SKC SKH MNC MNC SNC SNC SNC

E CO B SNH MNC SNC MKH MNH SKC SNH SKB MNC SKH MKH MNC SKH SKC SKB

F CO A SNH MNC SNC MKH MNH SKC SNH SKB MNC SKH MKH MNC SKH SKC SKB

F CO B SNH MNC SNC MKH MNH SKC SNH SKB MNC SKH MKH MNC SKH SKC SKB

G CO A SNH MNC SNC MKH MNH SKC SNH SKB MNC SKH MKH MNC SKH SKC SKB

G CO B SNH MNC SNC MKH MNH SKC SNH SKB MNC SKH MKH MNC SKH SKC SKB

H CO A SNH MNC SNC MKH MNH SKC SNH SKB MNC SKH MKH MNC SKH SKC SKB

H CO B SNH MNC SNC MKH MNH SKC SNH SKB MNC SKH MKH MNC SKH SKC SKB

QRF SNH MNC SNC MKH MNH SKC SNH SKB MNC SKH MKH MNC SKH SKC SKB

266

Table 79: Learned policy for all agents by turn for 15 turn UrbanSim game using

SARSA(λ), Boltzmann.

STRATEGY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

BATTALION COMMANDER SKC SKC SKC SKC SKC SKC SKC SKC SKC SKC SKC SKC SKC SKC SKC

CA UNIT SKC SKC SKC SKC SKC SKC SKC SKC SKC SKC SKC SKC SKC SKC SKC

E CO A SKC SKC SKC SKC SKC SKC SKC SKC SKC SKC SKC SKC SKC SKC SKC

E CO B SKC SKC SKC SKC SKC SKC SKC SKC SKC SKC SKC SKC SKC SKC SKC

F CO A SKC SKC SKC SKC SKC SKC SKC SKC SKC SKC SKC SKC SKC SKC SKC

F CO B SKC SKC SKC SKC SKC SKC SKC SKC SKC SKC SKC SKC SKC SKC SKC

G CO A SKC SKC SKC SKC SKC SKC SKC SKC SKC SKC SKC SKC SKC SKC SKC

G CO B SKC SKC SKC SKC SKC SKC SKC SKC SKC SKC SKC SKC SKC SKC SKC

H CO A SKC SKC SKC SKC SKC SKC SKC SKC SKC SKC SKC SKC SKC SKC SKC

H CO B SKC SKC SKC SKC SKC SKC SKC SKC SKC SKC SKC SKC SKC SKC SKC

QRF SKC SKC SKC SKC SKC SKC SKC SKC SKC SKC SKC SKC SKC SKC SKC

Table 80: Learned policy for all agents by turn for 15 turn UrbanSim game using Q(λ),

Boltzmann.

STRATEGY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

BATTALION COMMANDER MNB MNB MNB MNB MNB MNB MNB MNB MNB MNB MNB MNB MNB MNB MNB

CA UNIT MNB MNB MNB MNB MNB MNB MNB MNB MNB MNB MNB MNB MNB MNB MNB

E CO A MNB MNB MNB MNB MNB MNB MNB MNB MNB MNB MNB MNB MNB MNB MNB

E CO B MNB MNB MNB MNB MNB MNB MNB MNB MNB MNB MNB MNB MNB MNB MNB

F CO A MNB MNB MNB MNB MNB MNB MNB MNB MNB MNB MNB MNB MNB MNB MNB

F CO B MNB MNB MNB MNB MNB MNB MNB MNB MNB MNB MNB MNB MNB MNB MNB

G CO A MNB MNB MNB MNB MNB MNB MNB MNB MNB MNB MNB MNB MNB MNB MNB

G CO B MNB MNB MNB MNB MNB MNB MNB MNB MNB MNB MNB MNB MNB MNB MNB

H CO A SNB SNC SKC MKC MNB MKC SKC MNB MNH MNH SKB SKB MNH SKB MKB

H CO B SNB SNC SKC MKC MNB MKC SKC MNB MNH MNH SKB SKB MNH SKB MKB

QRF SNB SNC SKC MKC MNB MKC SKC MNB MNH MNH SKB SKB MNH SKB MKB

267

THIS PAGE INTENTIONALLY LEFT BLANK

268

APPENDIX I: ADDITIONAL BENCHMARKING RESULTS

This section provides additional insights into the performance of DQ-C in bench-

marking environments.

Figure 54: Performance of DQ-C in 5x5 deterministic grid world over γ by α paired with

ε-greedy.

269

Figure 55: Performance of DQ-C in 5x5 deterministic grid world over γ by α paired with

Boltzmann exploration.

270

Figure 56: Performance of DQ-C in 5x5 deterministic grid world over γ by ε paired with

ε-greedy with α = 0.6.

271

Figure 57: Performance of DQ-C in 5x5 deterministic grid world over γ by τ paired with

Boltzmann exploration with α = 0.6.

272

Figure 58: Performance of SARSA(λ) in 5x5 deterministic grid world over γ by λ paired

with ε-greedy.

273

Figure 59: Performance of SARSA(λ) in 5x5 deterministic grid world over γ by λ paired

with Boltzmann exploration.

274

Figure 60: Performance of SARSA(λ) in 5x5 deterministic grid world over γ by α paired

with ε-greedy with α = 0.6.

275

Figure 61: Performance of SARSA(λ) in 5x5 deterministic grid world over γ by τ paired

with Boltzmann exploration with α = 0.6.

276

Figure 62: Performance of DQ-C in noisy 10-arm bandit over γ by α paired with ε-greedy.

277

Figure 63: Performance of DQ-C in noisy 10-arm bandit over γ by α paired with Botzmann

exploration.

278

Figure 64: Performance of DQ-C in noisy 10-arm bandit over γ by τ paired with ε-greedy,

α = 0.6.

279

Figure 65: Performance of DQ-C in noisy 10-arm bandit over γ by τ paired with Botzmann

exploration, α = 0.6.

280

Table 81: Parameter settings that produced the best observed values for noisy 10-arm bandit.

ALGORITHM-π α γ ε OR τ λ

DQ-C, BOLTZMANN 0.9 0.1 0.1 NA

DQ-C, ε-GREEDY 0.9 0.6 0.1 NA

Q(λ), BOLTZMANN 0.2 0.8 0.1 0.4

Q(λ), ε-GREEDY 0.2 0.5 0.1 0.8

SARSA(λ), BOLTZMANN 0.9 0.5 0.3 0.8

SARSA(λ), ε-GREEDY 0.2 0.4 0.1 0.9

Table 82: Parameter settings that produced the best observed values for 5x5 Deterministic Grid-

world.

ALGORITHM-π α γ ε OR τ λ

DQ-C, BOLTZMANN 0.1 0.5 0.1 NA

DQ-C, ε-GREEDY 0.1 0.4 0.1 NA

Q(λ), BOLTZMANN 0.9 0.5 0.4 0.3

Q(λ), ε-GREEDY 0.8 0.6 0.4 0.5

SARSA(λ), BOLTZMANN 0.6 0.9 0.1 0.9

SARSA(λ), ε-GREEDY 0.3 0.9 0.1 0.3

Table 83: Parameter settings that produced the best observed values for 5x5 Stochastic Gridworld.

ALGORITHM-π α γ ε OR τ λ

DQ-C, BOLTZMANN 0.7 0.9 0.1 NA

DQ-C, ε-GREEDY 0.8 0.4 0.1 NA

Q(λ), BOLTZMANN 0.9 0.9 0.2 0.5

Q(λ), ε-GREEDY 0.5 0.5 0.3 0.5

SARSA(λ), BOLTZMANN 0.6 0.9 0.1 0.9

SARSA(λ), ε-GREEDY 0.4 0.9 0.1 0.9

281

THIS PAGE INTENTIONALLY LEFT BLANK

282

LIST OF REFERENCES

Acuña, D., & Schrater, P. (2010). Structure learning in human sequential decision-making.
Computational Biology, 6(12), 1–12.

Ahner, D., Buss, A., & Ruck, J. (2006). Assignment scheduling capability for unmanned
aerial vehicles. In L. Perrone, F. Wieland, J. Liu, B. Lawson, D. Nicol, & R. Fujimoto
(Eds.), Proceedings of the 39th conference on winter simulation (pp. 1349–1356).
Monterey, CA: IEEE Computer Society.

Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human
Decision Processes, 50(2), 179–211.

Alt, J., Jackson, L., Hudak, D., & Lieberman, S. (2009, December). The cultural geog-
raphy model: Evaluating the impact of tactical operational outcomes on a civilian
population in an irregular warfare environment. Journal of Defense Modeling and
Simulation, 6(4), 185–199.

Alt, J., Lieberman, S., & Blais, C. (2010). A use-case approach to the validation of social
modeling and simulation. In Springsim (pp. 305–312). Orlando, FL: Society for
Modeling and Simulation International.

Alt, J. K., Baez, F., & Darken, C. J. (2011, February). A practical situation based agent
architecture for social simulations. In G. Jakobson, M. Endsley, & M. Kokar (Eds.),
Cognitive methods in situation awareness and decision support (CogSIMA), 2011
IEEE first international Multi-Disciplinary conference on (pp. 305–312). Miami,
FL: Institute of Electrical and Electronics Engineers (IEEE).

Anderson, J. (2005). Cognitive psychology and its implications (6th ed.). New York: Worth
Publishers.

Anderson, J., & Schunn, C. (2005). Implications of the ACT-R learning Theory:No magic
bullets. In Advances in instructional psychology (Vol. 5). Mahwah, NJ: Erlbaum.

Asmuth, J., & Littman, M. L. (2011). Learning is planning: near bayes-optimal rein-
forcement learning via monte-carlo tree search. In Proceedings of the twenty-seventh
conference annual conference on uncertainty in artificial intelligence (pp. 19–26).
Corvallis, Oregon: AUAI Press.

Audibert, J. Y., Munos, R., & Szepesvári, C. (2007). Tuning bandit algorithms in stochastic
environments. In Algorithmic learning theory (pp. 150–165). Berlin: Springer.

Auer, P., & Ortner, R. (2010). UCB revisited: Improved regret bounds for the stochastic
multi-armed bandit problem. Periodica Mathematica Hungarica, 61(1), 55–65.

283

Bertsekas, D. (2011). Dynamic programming and optimal control 3rd edition, volume II
(3rd ed.). Belmont, MA: Athena Scientific.

Bertsekas, D., & Tsitsiklis, J. (1996). Neuro-dynamic programming (No. 3). Belmont,
MA: Athena Scientific.

Bertsekas, D. P. (1995). Dynamic programming and optimal control (2nd ed., Vol. 2).
Belmont, MA: Athena Scientific.

Blum, A., & Monsour, Y. (2007). Learning, regret minimization, and equilibria. Available
from http://repository.cmu.edu/compsci/133

Borrill, P. L., & Tesfatsion, L. S. (2010, July). Agent-based modeling: The right mathemat-
ics for the social sciences? (Tech. Rep.). Ames, Iowa: Iowa State University. Avail-
able from http://www2.econ.iastate.edu/tesfatsi/ABMRightMath.PBLTWP.pdf

Bouzy, B., & Chaslot, G. (2006). Monte-Carlo go reinforcement learning experiments.
In 2006 IEEE symposium on computational intelligence and games (pp. 187–194).
Reno, Nevada.

Brenner, T. (2006). Agent learning representations. In L. Tesfastion (Ed.), Handbook of
computational economics: Agent-Based computational economics (Vol. 2, pp. 896–
942). Boston: Elsevier.

Brubaker, R., Loveman, M., & Stamatov, P. (2004). Ethnicity as cognition. Theory and
Society, 33(1), 31–64.

Buss, A. (2001). Basic event graph modeling. Simulation News Europe, 31, 1–6.

Buss, A. (2002). Simkit: component based simulation modeling with simkit. In E. Yuce-
san (Ed.), Proceedings of the 34th conference on winter simulation: Exploring new
frontiers (pp. 243–249). San Diego: IEEE Computer Society.

Buss, A. (2009). Discrete event simulation modeling. Unpublished course notes., Mon-
terey, CA.

Buss, A., & Blais, C. (2007). Composability and component-based discrete event simula-
tion. In S. Henderson (Ed.), Proceedings of the 39th conference on winter simulation
(pp. 694–702). Washington, D.C.: IEEE Computer Society.

Buss, A. H., & Sanchez, P. J. (2002). Modeling very large scale systems: building complex
models with LEGOs (Listener event graph objects). In E. Yucesan (Ed.), Proceedings
of the 34th conference on winter simulation: Exploring new frontiers (pp. 732–737).
San Diego: IEEE Computer Society.

284

Buss, A. H., & Sanchez, P. J. (2005). Simple movement and detection in discrete event
simulation. In M. Kuhl (Ed.), Proceedings of the 37th conference on winter simula-
tion (pp. 992–1000). Orlando, FL: IEEE Computer Society.

Cassenti, D. (2009, May). Performance moderated function server’s (pmfserv) military
utility: A model and discussion (Technical Report No. ARL-TR-4814). Adelphi,
MD: Army Research Laboratory.

Cioppa, T. M., Lucas, T. W., & Sanchez, S. M. (2004). Military applications of agent-
based simulations. In R. Ingalls (Ed.), Proceedings of the 36th conference on winter
simulation (pp. 180–190). Washington, D.C.: IEEE Computer Society.

Cook, K., & Rice, E. (2006). Social exchange theory. In J. Delamater (Ed.), Handbook of
social psychology (pp. 53–76). New York, NY: Springer.

Correll, S., & Ridgeway, C. (2006). Expectation states theory. In J. Delamater (Ed.),
Handbook of social psychology (pp. 29–51). New York, NY: Springer.

Craig, C., Klein, M. I., Griswold, J., Gaitonde, K., McGill, T., & Hall-
dorsson, A. (2012). Using cognitive task analysis to identify crit-
ical decisions in the laparoscopic environment. Human Factors: The
Journal of the Human Factors and Ergonomics Society. Available from
http://hfs.sagepub.com/content/early/2012/06/07/0018720812448393.abstract

DA. (1999). Department of the army pamphlet (da pam) 5-11: Verification, validation,
and accreditation of army models and simulations (Tech. Rep.). Washington, D.C.:
Department of the Army.

Davis, D. N., & Venkatamuni, V. M. (2010). A “Society of mind” cognitive architecture
based on the principles of artificial economics. International Journal of Artficial Life
Research, 1(1), 51–71.

Dimitrakakis, C., & Lagoudakis, M. (2008). Rollout sampling approximate policy iteration.
Machine Learning, 72(3), 157–171.

DMSO. (2004). The verification, validation, and accreditation recommended practices
guide (Tech. Rep.). Washington, D.C.: Department of Defense Modeling and Simu-
lation Office.

Drogoul, A., & Ferber, J. (1994). Multi-agent simulation as a tool for modeling societies:
Application to social differentiation in ant colonies. Berlin: Springer.

Duffy, J. (2006). Agent-based models and human subject experiments. In L. Tesfatsion &
K. Judd (Eds.), Handbook of computational economics: Agent-Based computational
economics (Vol. 2, chap. 19). Boston: Elsevier.

Epstein, J. (2006). Generative social science. Princeton, NJ: Princeton University Press.

285

Ferber, J., Gutknecht, O., & Michel, F. (2004). From agents to organizations: an orga-
nizational view of multi-agent systems. Agent-Oriented Software Engineering IV ,
443–459.

Ferster, C., & Skinner, B. (1957). Schedules of reinforcement. East Norwalk, CT:
Appleton-Century-Crofts.

Flavell, J. (1979). Metacognition and cognitive monitoring: A new area of cognitive-
developmental inquiry. American Psychologist, 34, 906–911.

Gilbert, N. (2004). Agent-based social simulation: dealing with complexity. The Complex
Systems Network of Excellence, 9(25), 1–14.

Gilbert, N. (2008). Agent-based models (No. 153). Los Angeles: Sage.

Goerger, S. R., McGinnis, M. L., & Darken, R. P. (2005, January). A validation method-
ology for human behavior representation models. Journal of Defense Modeling and
Simulation, 2(1), 5–17.

Hasselt, H. van. (2010). Insights in reinforcement learning. Unpublished doctoral disserta-
tion, Dutch Research School for Information and Knowledge Systems, Netherlands.

Hogg, M. A. (2006). Intergroup relations. In J. Delamater (Ed.), Handbook of social
psychology (pp. 479–501). New York, NY: Springer.

Howard, J., & Renfrow, D. (2006). Social cognition. In J. Delamater (Ed.), Handbook of
social psychology (pp. 259–281). New York, NY: Springer.

Iiskala, T., Vauras, M., Lehtinen, E., & Salonen, P. (2011, June). Socially shared metacog-
nition of dyads of pupils in collaborative mathematical problem-solving processes.
Learning and Instruction, 21(3), 379–393.

Ishida, F., Sasaki, T., Sakaguchi, Y., & Shimai, H. (2009, March). Reinforcement-learning
agents with different temperature parameters explain the variety of human action-
selection behavior in a markov decision process task. Neurocomputing, 72(7-9),
1979–1984.

Jackson, L., & Sullivan, L. (1989). Cognition and affect in evaluations of stereotyped
group members. The Journal of Social Psychology, 129(5), 659–672.

John, B. E., & Kieras, D. E. (1996). The goms family of user interface analysis techniques:
comparison and contrast. ACM Transactions on Compututer and Human Interaction,
3(4), 320–351. Available from http://doi.acm.org/10.1145/235833.236054

Kaelbling, P., Littman, M., & Moore, A. (1996). Reinforcement learning: A survey.
Journal of Artificial Intelligence Research, 4, 237–285.

286

Kakade, S. M., Lobel, I., & Nazerzadeh, H. (2010). An optimal dynamic mechanism for
Multi-Armed bandit processes (Vol. abs/1001.4598; Tech. Rep.). Cornell University.
Available from http://arxiv.org/abs/1001.4598

Kaplan, H. B. (2006). Social psychological perspectives on deviance. In J. Delamater
(Ed.), Handbook of social psychology (pp. 451–478). New York, NY: Springer.

Kenrick, D. T., Griskevicius, V., Neuberg, S. L., & Schaller, M. (2010, May). Ren-
ovating the pyramid of needs: Contemporary extensions built upon ancient foun-
dations. Perspectives on Psychological Science, 5(3), 292–314. Available from
http://pps.sagepub.com/lookup/doi/10.1177/1745691610369469

Klein, G. (1993). A recognition-primed decision (RPD) model of rapid decision making.
In G. Klein, J. Orasanu, R. Calderwood, & C. Zsambok (Eds.), Decision making in
action: Models and methods (pp. 138–147). Ablex Publishing.

Klein, G. (2008). Naturalistic decision making. Human Factors: The Journal of
the Human Factors and Ergonomics Society, 50(3), 456-460. Available from
http://hfs.sagepub.com/content/50/3/456.abstract

Kocsis, L., & Szepesvári, C. (2006). Bandit based monte-carlo planning. Machine Learn-
ing: ECML 2006, 282–293.

Kuleshov, V., & Precup, D. (2010). Algorithms for the multi-armed bandit problem. Avail-
able from http://www.cs.mcgill.ca/ vkules/

Kunde, D. (2005). Event prediction for modeling mental simulation in naturalistic decision
making. Unpublished doctoral dissertation, Naval Postgraduate School.

Laird, J. E. (2008). Extending the soar cognitive architecture. In Artificial general intel-
ligence 2008: Proceedings of the first AGI conference (pp. 224–235). Amsterdam,
The Netherlands: IOS Press.

Laird, J. E., & Wray III, R. E. (2010). Cognitive architecture requirements
for achieving agi. In Proceedings of the 3rd conference on artificial gen-
eral intelligence. Lugano, Switzerland. Available from agi-conf.org/2010/wp-
content/uploads/2009/06/paper4.pdf

Langley, P., Laird, J. E., & Rogers, S. (2009, June). Cognitive architectures: Research
issues and challenges. Cognitive Systems Research, 10(2), 141–160. Available from
http://linkinghub.elsevier.com/retrieve/pii/S1389041708000557

Lattal, K. A. (2010, January). DELAYED REINFORCEMENT OF OPERANT BEHAV-
IOR. Journal of the Experimental Analysis of Behavior, 93(1), 129–139. Available
from http://www.ncbi.nlm.nih.gov/pmc/PMC2801538

287

Lee, D., Seo, H., & Jung, M. W. (2012). Neural basis of reinforcement learning and
decision making. Annual Review of Neuroscience, 35(1), 287-308. Available from
http://www.annualreviews.org/doi/abs/10.1146/annurev-neuro-062111-150512

Maio, G., Olson, J., Bernard, M., & Luke, M. (2006). Ideologies, values, attitudes,
and behavior. In J. Delamater (Ed.), Handbook of social psychology (pp. 283–308).
Springer.

Mansoor, P. (2007). A new counterinsurgency center of gravity analysis: Linking doctrine
to action. Professional Military Review, Journal of the U.S. Army.

McKaughan, D. (2011). Comparison of data development tools for populating cogni-
tive models in social simulation. Unpublished master’s thesis, Naval Postgraduate
School, Monterey, CA.

Miller, J., & Page, S. (2007). Complex adaptive systems. Princeton, NJ: Princeton Univer-
sity Press.

Moody, J., Liu, Y., Saffell, M., & Youn, K. (2004). Stochastic direct reinforcement:
Application to simple games with recurrence. In Proceedings of artificial multiagent
learning. papers from the 2004 AAAI fall symposium, technical report FS-04 (Vol. 2).
Arlington, VA: AAAI Press.

Moody, J., & Saffell, M. (2001). Learning to trade via direct reinforcement. Neural
Networks, IEEE Transactions on, 12(4), 875–889.

Nannini, C. (2006). Analysis of the assignment scheduling capabiilty for unmanned aerial
vehicles. Unpublished master’s thesis, Naval Postgraduate School, Monterey, CA.

Nargeot, R., & Simmers, J. (2011). Neural mechanism of operant conditioning and
learning-induced behavioral plasticity in aplysia. Cellular and Molecular Life Sci-
ences, 68(5), 803–816.

Nedic, A., Tomlin, D., Holmes, P., Prentice, D. A., & Cohen, J. D. (2008,
March). A decision task in a social context: Human experiments, mod-
els, and analyses of behavioral data. Proceedings of the IEEE Con-
ference on Decision and Control, 100(3), 713–733. Available from
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6069518

Nouris, A. (2010). Efficient model-based exploration in continuous state-space environ-
ments. Dissertation, Rutgers, The State University of New Jersey, Rutgers, New
Jersey.

288

Okouchi, H. (2009, May). RESPONSE ACQUISITION BY HU-
MANS WITH DELAYED REINFORCEMENT. Journal of the Ex-
perimental Analysis of Behavior, 91(3), 377–390. Available from
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2677568

Olson, J. R., & Olson, G. M. (1990, June). The growth of cognitive
modeling in human-computer interaction since goms. ACM Transactions
on Compututer and Human Interaction, 5(2), 221–265. Available from
http://dx.doi.org/10.1207/s15327051hci0502 34

Oyewole, S. A., & Haight, J. M. (2011). Determination of opti-
mal paths to task goals using expert system based on goms model.
Computers in Human Behavior, 27(2), 823–833. Available from
http://www.sciencedirect.com/science/article/pii/S074756321000350X

Ozcan, O., Alt, J., & Darken, C. (2011). Balancing exploration and exploitation in agent
learning. In Twenty-Fourth international FLAIRS conference. Miami, FL: AAAI
Press.

Ozkan, O. (2011). Balancing exploration and exploitation in agent learning. Unpublished
master’s thesis, Naval Postgraduate School, Monterey, CA.

Papadopoulos, M. (2010). Reinforcement learning: A new approach for the cultural ge-
ography model. Unpublished master’s thesis, Naval Postgraduate School, Monterey,
CA.

Papadopoulos, S., Alt, J., Darken, C., & Baez, F. (2013). Behavior selection using utility-
based reinforcement learning in irregular warfare simulation models. International
Journal of Operations Research and Information Systems, 4(3), Manuscript accepted
for publication.

Peeters, M., Könönen, V., Verbeeck, K., & Nowé, A. (2008). A learning automata ap-
proach to multi-agent policy gradient learning. In I. Lovrek (Ed.), Knowledge-Based
intelligent information and engineering systems (pp. 379–390). Berlin: Springer.

Pollock, S., Alt, J., & Darken, C. (2011). Representing trust in cognitive social simulations.
In J. Salerno (Ed.), Social computing, behavioral-cultural modeling and prediction
(Vol. 6589, pp. 301–308). Berlin: Springer.

Powell, W. (2011). Approximate dynamic programming: Solving the curses of dimension-
ality (2nd ed.). Hoboken, NJ: John Wiley & Sons.

Powers, W., & Treval, W. (1973). Behavior: The control of perception. Chicago: Aldine.

Robbins, H. (1952). Some aspects of the sequential design of experiments. Bulletin of the
American Mathematical Society, 58(5), 527–535.

289

Ross, S. (1982). Introduction to stochastic dynamic programming. Berkley, CA: Academic
Press, Inc.

Russell, S., & Norvig, P. (2010). Artificial intelligence: A modern approach (Third ed.;
M. Hirsch, Ed.). New York, NY: Prentice Hall.

Sato, M., & Kobayashi, S. (2000). Variance-penalized reinforcement learning for risk-
averse asset allocation. In Proceedings of the second international conference on
intelligent data engineering and automated learning, data mining, financial engi-
neering, and intelligent agents (pp. 244–249). London, UK: Springer.

Schelling, T. C. (1972). Dynamic models of segregation. Journal of Mathematical Sociol-
ogy, 1, 143–186.

Shoham, Y., & Leyton-Brown, K. (2009). Multiagent systems: Algorithmic, game-
theoretic, and logical foundations. Cambridge: Cambridge University Press.

Skinner, B. (1938). The behavior of organisms. New York: Appleton-Century-Crofts.

Smith, A. (1966). The wealth of nations. Raleigh, NC: Hayes Barton Press.

Sorg, J., Singh, S., & Lewis, R. L. (2010). Variance-Based rewards for approximate
bayesian reinforcement learning. In Proceedings of the 26th conference on uncer-
tainty in artificial intelligence (pp. 564–571). Catalina Island, CA: AUAI Press.

Stets, J. (2006). Emotions and sentiments. In J. Delamater (Ed.), Handbook of social
psychology (pp. 309–335). Berlin: Springer.

Steyvers, M., Lee, M., & Wagenmakers, E. (2009). A bayesian analysis of human decision-
making on bandit problems. Journal of Mathematical Psychology, 53(3), 168–179.

Still, S., & Precup, D. (2012, September). An information-theoretic approach to curiosity-
driven reinforcement learning. Theory in Bioscience, 131(3), 139–148.

Strehl, A., & Littman, M. (2004). An empirical evaluation of interval estimation for markov
decision processes. In Tools with artificial intelligence, 2004. ICTAI 2004. 16th IEEE
international conference on tools with artificial intelligence (pp. 128–135). Boca
Raton, FL: IEEE Computer Society.

Strehl, A., & Littman, M. (2005). A theoretical analysis of model-based interval estima-
tion: Proofs (Tech. Rep.). Rutgers, NJ: Rutgers University.

Sun, R. (2006). Cognition and Multi-Agent interaction: From cognitive modeling to social
simulation (R. Sun, Ed.). Cambridge, MA: Cambridge University Press.

Sun, R. (2007a, September). Cognitive social simulation incorporating cognitive architec-
tures. IEEE Intelligent Systems, 22(5), 33–39.

290

Sun, R. (2007b). The importance of cognitive architectures: An analysis based on CLAR-
ION. Journal of Experimental and Theoretical Artificial Intelligence, 19(2), 159–
193.

Sun, R., & Naveh, I. (2007). Social institution, cognition, and survival: a cognitive–social
simulation. Mind & Society, 6(2), 115–142.

Sun, R., Zhang, X., & Mathews, R. (2006). Modeling meta-cognition in a cognitive
architecture. Cognitive Systems Research, 7(4), 327–338.

Sundaram, R. K. (2005). Generalized bandit problems. In D. Austen-Smith & J. Duggan
(Eds.), Social choice and strategic decisions (pp. 131–162). Berlin: Springer.

Sutton, R., & Barto, A. (1998). Reinforcement learning: An introduction. Cambridge,
MA: MIT Press.

Sykulski, A. M., Adams, N. M., & Jennings, N. R. (2010). On-Line adaptation of
exploration in the One-Armed bandit with covariates problem. In S. Draghici,
T. M. Khoshgoftaar, V. Palade, W. Pedrycz, M. A. Wani, & X. Zhu (Eds.), Proceed-
ings of the internal conference of machine learning and applications (pp. 459–464).
Washington, D.C.: IEEE Computer Society.

Szepesvari, C. (2010). Algorithms for reinforcement learning. San Francisco: Morgan &
Claypool Publishers.

Szita, I., Chaslot, G., & Spronck, P. (2010). Monte-carlo tree search in settlers of catan.
Advances in Computer Games, 21–32.

Taatgen, N., Lebiere, C., & Anderson, J. (2006). Modeling paradigms in ACT-R. In
R. Sun (Ed.), Cognition and multi-agent interaction: From cognitive modeling to
social simulation (pp. 29–52). Cambridge: Cambridge University Press.

Taatgen, N. A., & Anderson, J. R. (2008). Constraints in cognitive architectures. In Cam-
bridge handbook of computational psychology (pp. 170–185). Cambridge: Cam-
bridge University Press.

Tesfatsion, L., & Judd, K. (Eds.). (2006). Handbook of computational economics: Agent-
Based computational economics (Vol. 2) (No. 13). Boston: Elsevier.

Thorndike, E. (1911). Animal intelligence. New York: MacMillan.

Thrun, S., & Schwartz, A. (1993). Issues in using function approximation for reinforcement
learning. In Proceedings of the 1993 connectionist models summer school. Hillsdale,
NJ: Erlbaum.

291

Tokic, M. (2010). Adaptive epsilon-greedy exploration in reinforcement learning based
on value differences. In KI 2010: Advances in artificial intelligence (pp. 203–210).
Berlin: Springer.

Tran-Thanh, L., Chapman, A., Munoz De Cote Flores Luna, J., Rogers, A., & Jennings,
N. (2010). Epsilon–First policies for Budget–Limited Multi-Armed bandits. In Aaai
conference on artificial intelligence. Palo Alto, CA: AAAI Press.

Valgaeren, K., Croonenborghs, T., & Colleman, P. (2009). Rein-
forcement learning with monte carlo tree search. Available from
http://users.telenet.be/KimValgaeren/eindwerk20ppt/Paper20Valgaeren20Kim.pdf

Walsh, M., & Anderson, J. (2010). Neural correlates of temporal credit assignment. In
D. Salvucci (Ed.), Proceedings of the 10th international conference on cognitive
modeling (pp. 265–270). Philadelphia, PA: Drexell University.

Wang, N., Pynadath, D., & Marsella, S. (2012). Toward automatic ver-
ification of multiagent systems for training simulations. In Intelligent
tutoring systems (pp. 151–161). Berlin: Springer. Available from
http://www.springerlink.com/index/E46382Q47W5H1676.pdf

Wansbury, T., Hart, J., Gordon, A. S., & Wilkinson, J. (2010). UrbanSim: training adapt-
able leaders in the art of battle command. In The Interservice/Industry training,
simulation and education conference (I/ITSEC) (Vol. 2010). Orlando, FL. Available
from http://ntsa.metapress.com/index/V0018279L8J824N8.pdf

Watkins, C., & Dayan, P. (1992). Q-learning. Machine Learning, 8(3), 279–292.

Wickens, C., & Hollands, J. (2000). Engineering psychology and human performance (3rd
ed.). Upper Saddle River, New Jersey: Prentice Hall.

Wilson, R. A. (2001). Group-level cognition. Philosophy of Science, 68(3), 262–273.

Wray, R., & Jones, R. (2006). Considering SOAR as an agent architecture. In R. Sun
(Ed.), Cognition and Multi-Agent interaction: From cognitive modeling to social
simulation (pp. 53–78). Cambridge: Cambridge University Press.

Yi, M. S., Steyvers, M., & Lee, M. (2009). Modeling human performance in restless
bandits with particle filters. The Journal of Problem Solving, 2(2), 5.

Yu, H., & Bertsekas, D. (2011). Q-Learning and policy iteration algorithms for stochastic
shortest path problems (Tech. Rep.). Massachusetts Institute of Technology.

Zacharias, G., MacMillan, J., & Van Hemel, S. E. (2008). Behavioral modeling and simu-
lation: From individuals to societies (G. Zacharias, J. MacMillan, & S. Van Hemel,
Eds.). Washington, D.C.: National Academies Press.

292

INITIAL DISTRIBUTION LIST

1.Defense Technical Information Center
Ft. Belvoir, Virginia

2.Dudley Knox Library
Naval Postgraduate School
Monterey, California

3.Dr. Christian J. Darken
Naval Postgraduate School
Monterey, California

4.Dr. Jeffrey Appleget
Naval Postgraduate School
Monterey, California

5.Dr. Arnold Buss
Naval Postgraduate School
Monterey, California

6.Dr. Michael McCauley
Naval Postgraduate School
Monterey, California

7.Dr. Michael Jaye
Naval Postgraduate School
Monterey, California

293

	Cover Page
	SF 298
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	List of Acronyms
	Acknowledgements
	I Introduction
	A Motivating Problem
	B Definitions and Terminology
	C Challenges of Adaptive Agent Decision Making in Analytic and Training Simulations
	D Dissertation Contributions and Organization

	II Reinforcement Learning and Cognitive Architectures for Autonomous Agent Decision-Making
	A Reinforcement Learning
	1 Temporal Differencing, Monte-Carlo, and TD() Methods
	a Q-learning and Q()
	b SARSA and SARSA()

	2 Exporation and Exploitation
	a -Greedy
	b Boltzmann Exploration
	c Interval Estimation and Upper Confidence Bound
	d Other Recent Approaches

	3 Measures of Learning Performance
	a Convergence
	b Speed of Convergence
	c Regret
	d Approximation Error
	e Frequency of Optimal Action Selection

	B Cognitive Architectures
	1 Considerations in Cognitive Modeling
	2 Recognition-Primed Decision Making and Goals, Operators, Methods, Selectors
	3 Review of Cognitive Architectures
	a Active Components of Thought
	b State Operator and Results
	c Connectionist Learning with Adaptive Rule Induction On-line

	4 Learning in Cognitive Architectures
	5 Agent Based Models, Cognitive Modeling, and Complexity

	C A Sample of Department of Defense Simulation Models
	1 Combined Arms Analysis Toolkit for the Twenty-first Century
	2 UrbanSim
	3 Assignment Scheduling Capability for Unmanned Aerial Systems
	4 Cultural Geography Model

	D Summary

	III Direct-Q Computation
	A Direct-Q Computation
	B Benchmark Problems
	1 N-Arm Bandit
	2 Two-Arm Bandit
	3 Gridworld
	4 Summary

	C Physical Traveling Salesman Problem
	1 Problem Specification
	2 RL Formulation
	3 Empirical Results
	4 Insights from the Physical Traveling Salesman Problem

	D Pacman
	1 Problem Specification
	2 RL Formulation
	3 Empirical Results
	4 Insights from PACMAN

	E Insights on DQ-C

	IV Applications
	A Unmanned Aerial Vehicle Assignment and Scheduling Problem
	1 Assignment Scheduling Capability for UAVs
	2 Problem Specification
	3 RL Formulation and Empirical Results
	a Case 1 Formulation
	b Case 1 Empirical Results
	c Case 2 Formulation
	d Case 2 Empirical Results

	4 Insights on the Use of Reinforcement Learning in a Scheduling Tool

	B Adaptive Behavior in COMBATXXI
	1 Case 1 Formulation
	2 Case 1 Empirical Results
	3 Case 2 Formulation
	4 Case 2 Empirical Results
	5 Insights on the Use of Reinforcement Learning in Combat Simulations

	C Verifying the Reward Structure in Training Simulation
	1 Problem Specification
	2 RL Formulation and Empirical Results
	a Case 1 Formulation
	b Case 1 Empirical Results
	c Case 2 Formulation
	d Case 2 Empirical Results
	e Case 3 Formulation
	f Case 3 Empirical Results

	3 Insights on the Verification of Training Simulations

	D Conclusions

	V Development of a Practical Cognitive Architecture
	A General Framework and Implementation Description
	1 Perception
	2 Meta-cognition
	3 Long-term Memory
	4 Action Selection

	B Generic Implementation Description
	C Cognitive Architectures to Represent Group Cognition
	1 Cognitive Structures
	2 Cognitive Processes
	3 Sentiment
	4 Group Behavior and Deviance

	D Application of the Reinforcement Learning and A Practical Cognitive Architecture within the Cultural Geography Model
	1 Initial Application of Reinforcement Learning within CG
	2 Representing Theory of Planned Behavior
	3 Incorporation of a Cognitive Architecture

	E Conclusions

	VI Conclusion
	A Summary of Contributions
	1 Direct-Q Computation
	2 Enabling Adaptive Behavior in a Combat Simulation
	3 Maximizing the Value of a UAV Schedule from a DES
	4 Verification of Reward Structure in Training Simulation
	5 Practical Cognitive Architecture

	B Future Research
	Appendix A: First-Visit and Every-Visit Monte-Carlo

	Appendix A: First-Visit and Every-Visit Monte-Carlo
	epsilon $-greedy and Boltzmann Exploration.1endcsname {Appendix B: Comparison of -greedy and Boltzmann Exploration}let eserved@d =[def def Appendix B: Comparison of -greedy and Boltzmann Exploration{Appendix B: Comparison of -greedy and Boltzmann Exploration}�egingroup edef protect unhbox voidb@x penalty @M {}{~}xdef Appendix B: Comparison of $\epsilon $-greedy and Boltzmann Exploration.1{chapter*.8}endgroup let Appendix B: Comparison of $\epsilon $-greedy and Boltzmann Exploration.1Appendix B: Comparison of $\epsilon $-greedy and Boltzmann Exploration.1pdfoutline goto name{Appendix B: Comparison of $\epsilon $-greedy and Boltzmann Exploration.1}count-1{Appendix B: Comparison of -greedy and Boltzmann Exploration}let eserved@d =[def def Appendix B: Comparison of -greedy and Boltzmann Exploration{Appendix C: Bayesian Optimal Policy for N-Arm Bandit}�egingroup edef protect unhbox voidb@x penalty @M {}{~}xdef Appendix B: Comparison of $\epsilon $-greedy and Boltzmann Exploration.1{Appendix C: Bayesian Optimal Policy for N-Arm Bandit.1}endgroup let Appendix B: Comparison of $\epsilon $-greedy and Boltzmann Exploration.1Appendix B: Comparison of $\epsilon $-greedy and Boltzmann Exploration.1pdfoutline goto name{Appendix B: Comparison of $\epsilon $-greedy and Boltzmann Exploration.1}count-0{Appendix B: Comparison of -greedy and Boltzmann Exploration}let eserved@d =[def def Appendix B: Comparison of -greedy and Boltzmann Exploration{Appendix C: Bayesian Optimal Policy for N-Arm Bandit}�egingroup edef protect unhbox voidb@x penalty @M {}{~}xdef Appendix B: Comparison of $\epsilon $-greedy and Boltzmann Exploration.1{chapter*.9}endgroup let Appendix B: Comparison of $\epsilon $-greedy and Boltzmann Exploration.1Appendix B: Comparison of $\epsilon $-greedy and Boltzmann Exploration.1pdfoutline goto name{Appendix B: Comparison of $\epsilon $-greedy and Boltzmann Exploration.1}count-1{Appendix B: Comparison of -greedy and Boltzmann Exploration}let eserved@d =[def def Appendix B: Comparison of -greedy and Boltzmann Exploration{Appendix D: Analysis of DQ-C and TDelax $elax protect �egingroup immediate write @unused def MessageBreak
 let protect edef Your command was ignored.MessageBreak Type I <command> <return> to replace it with another command,MessageBreak or <return> to continue without it. errhelp let def MessageBreak
 def errmessage LaTeX Error: Bad math environment delimiter.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help endgroup }�egingroup edef protect unhbox voidb@x penalty @M {}{~}xdef Appendix B: Comparison of $\epsilon $-greedy and Boltzmann Exploration.1{Appendix D: Analysis of DQ-C and TD($\lambda $).1}endgroup let Appendix B: Comparison of $\epsilon $-greedy and Boltzmann Exploration.1Appendix B: Comparison of $\epsilon $-greedy and Boltzmann Exploration.1pdfoutline goto name{Appendix B: Comparison of $\epsilon $-greedy and Boltzmann Exploration.1}count-B_Appendix D: Analysis of DQ-C and TD($ lambda $).1endcsname {Appendix B: Comparison of -greedy and Boltzmann Exploration}let eserved@d =[def def Appendix B: Comparison of -greedy and Boltzmann Exploration{Appendix D: Analysis of DQ-C and TDelax $elax protect �egingroup immediate write @unused def MessageBreak
 let protect edef Your command was ignored.MessageBreak Type I <command> <return> to replace it with another command,MessageBreak or <return> to continue without it. errhelp let def MessageBreak
 def errmessage LaTeX Error: Bad math environment delimiter.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help endgroup }�egingroup edef protect unhbox voidb@x penalty @M {}{~}xdef Appendix B: Comparison of $\epsilon $-greedy and Boltzmann Exploration.1{chapter*.10}endgroup let Appendix B: Comparison of $\epsilon $-greedy and Boltzmann Exploration.1Appendix B: Comparison of $\epsilon $-greedy and Boltzmann Exploration.1pdfoutline goto name{Appendix B: Comparison of $\epsilon $-greedy and Boltzmann Exploration.1}count-1{Appendix B: Comparison of -greedy and Boltzmann Exploration}let eserved@d =[def def Appendix B: Comparison of -greedy and Boltzmann Exploration{Appendix E: PTSP Maps}�egingroup edef protect unhbox voidb@x penalty @M {}{~}xdef Appendix B: Comparison of $\epsilon $-greedy and Boltzmann Exploration.1{Appendix E: PTSP Maps.1}endgroup let Appendix B: Comparison of $\epsilon $-greedy and Boltzmann Exploration.1Appendix B: Comparison of $\epsilon $-greedy and Boltzmann Exploration.1pdfoutline goto name{Appendix B: Comparison of $\epsilon $-greedy and Boltzmann Exploration.1}count-0{Appendix B: Comparison of -greedy and Boltzmann Exploration}let eserved@d =[def def Appendix B: Comparison of -greedy and Boltzmann Exploration{Appendix E: PTSP Maps}�egingroup edef protect unhbox voidb@x penalty @M {}{~}xdef Appendix B: Comparison of $\epsilon $-greedy and Boltzmann Exploration.1{chapter*.11}endgroup let Appendix B: Comparison of $\epsilon $-greedy and Boltzmann Exploration.1Appendix B: Comparison of $\epsilon $-greedy and Boltzmann Exploration.1pdfoutline goto name{Appendix B: Comparison of $\epsilon $-greedy and Boltzmann Exploration.1}count-1{Appendix B: Comparison of -greedy and Boltzmann Exploration}let eserved@d =[def def Appendix B: Comparison of -greedy and Boltzmann Exploration{Appendix F: Full ASC-U Formulation}�egingroup edef protect unhbox voidb@x penalty @M {}{~}xdef Appendix B: Comparison of $\epsilon $-greedy and Boltzmann Exploration.1{Appendix F: Full ASC-U Formulation.1}endgroup let Appendix B: Comparison of $\epsilon $-greedy and Boltzmann Exploration.1Appendix B: Comparison of $\epsilon $-greedy and Boltzmann Exploration.1pdfoutline goto name{Appendix B: Comparison of $\epsilon $-greedy and Boltzmann Exploration.1}count-0{Appendix B: Comparison of -greedy and Boltzmann Exploration}let eserved@d =[def def Appendix B: Comparison of -greedy and Boltzmann Exploration{Appendix F: Full ASC-U Formulation}�egingroup edef protect unhbox voidb@x penalty @M {}{~}xdef Appendix B: Comparison of $\epsilon $-greedy and Boltzmann Exploration.1{chapter*.12}endgroup let Appendix B: Comparison of $\epsilon $-greedy and Boltzmann Exploration.1Appendix B: Comparison of $\epsilon $-greedy and Boltzmann Exploration.1pdfoutline goto name{Appendix B: Comparison of $\epsilon $-greedy and Boltzmann Exploration.1}count-1{Appendix B: Comparison of -greedy and Boltzmann Exploration}let eserved@d =[def def Appendix B: Comparison of -greedy and Boltzmann Exploration{Appendix G: Learned State-Action Values for UrbanSim.}�egingroup edef protect unhbox voidb@x penalty @M {}{~}xdef Appendix B: Comparison of $\epsilon $-greedy and Boltzmann Exploration.1{Appendix G: Learned State-Action Values for UrbanSim..1}endgroup let Appendix B: Comparison of $\epsilon $-greedy and Boltzmann Exploration.1Appendix B: Comparison of $\epsilon $-greedy and Boltzmann Exploration.1pdfoutline goto name{Appendix B: Comparison of $\epsilon $-greedy and Boltzmann Exploration.1}count-0{Appendix B: Comparison of -greedy and Boltzmann Exploration}let eserved@d =[def def Appendix B: Comparison of -greedy and Boltzmann Exploration{Appendix G: Learned State-Action Values for UrbanSim}�egingroup edef protect unhbox voidb@x penalty @M {}{~}xdef Appendix B: Comparison of $\epsilon $-greedy and Boltzmann Exploration.1{chapter*.13}endgroup let Appendix B: Comparison of $\epsilon $-greedy and Boltzmann Exploration.1Appendix B: Comparison of $\epsilon $-greedy and Boltzmann Exploration.1pdfoutline goto name{Appendix B: Comparison of $\epsilon $-greedy and Boltzmann Exploration.1}count-1{Appendix B: Comparison of -greedy and Boltzmann Exploration}let eserved@d =[def def Appendix B: Comparison of -greedy and Boltzmann Exploration{Appendix H: Strategy Level Policies by Algorithm UrbanSim}�egingroup edef protect unhbox voidb@x penalty @M {}{~}xdef Appendix B: Comparison of $\epsilon $-greedy and Boltzmann Exploration.1{Appendix H: Strategy Level Policies by Algorithm UrbanSim.1}endgroup let Appendix B: Comparison of $\epsilon $-greedy and Boltzmann Exploration.1Appendix B: Comparison of $\epsilon $-greedy and Boltzmann Exploration.1pdfoutline goto name{Appendix B: Comparison of $\epsilon $-greedy and Boltzmann Exploration.1}count-0{Appendix B: Comparison of -greedy and Boltzmann Exploration}let eserved@d =[def def Appendix B: Comparison of -greedy and Boltzmann Exploration{Appendix H: Strategy Level Policies by Algorithm UrbanSim}�egingroup edef protect unhbox voidb@x penalty @M {}{~}xdef Appendix B: Comparison of $\epsilon $-greedy and Boltzmann Exploration.1{chapter*.14}endgroup let Appendix B: Comparison of $\epsilon $-greedy and Boltzmann Exploration.1Appendix B: Comparison of $\epsilon $-greedy and Boltzmann Exploration.1pdfoutline goto name{Appendix B: Comparison of $\epsilon $-greedy and Boltzmann Exploration.1}count-1{Appendix B: Comparison of -greedy and Boltzmann Exploration}let eserved@d =[def def Appendix B: Comparison of -greedy and Boltzmann Exploration{Appendix I: Additional Benchmarking Results}�egingroup edef protect unhbox voidb@x penalty @M {}{~}xdef Appendix B: Comparison of $\epsilon $-greedy and Boltzmann Exploration.1{Appendix I: Additional Benchmarking Results.1}endgroup let Appendix B: Comparison of $\epsilon $-greedy and Boltzmann Exploration.1Appendix B: Comparison of $\epsilon $-greedy and Boltzmann Exploration.1pdfoutline goto name{Appendix B: Comparison of $\epsilon $-greedy and Boltzmann Exploration.1}count-0{Appendix B: Comparison of -greedy and Boltzmann Exploration}let eserved@d =[def def Appendix B: Comparison of -greedy and Boltzmann Exploration{Appendix I: Additional Benchmarking Results}�egingroup edef protect unhbox voidb@x penalty @M {}{~}xdef Appendix B: Comparison of $\epsilon $-greedy and Boltzmann Exploration.1{chapter*.15}endgroup let Appendix B: Comparison of $\epsilon $-greedy and Boltzmann Exploration.1Appendix B: Comparison of $\epsilon $-greedy and Boltzmann Exploration.1pdfoutline goto name{Appendix B: Comparison of $\epsilon $-greedy and Boltzmann Exploration.1}count-0{Appendix B: Comparison of -greedy and Boltzmann Exploration}let eserved@d =[def def Appendix B: Comparison of -greedy and Boltzmann Exploration{LIST OF REFERENCES}�egingroup edef protect unhbox voidb@x penalty @M {}{~}xdef Appendix B: Comparison of $\epsilon $-greedy and Boltzmann Exploration.1{section*.16}endgroup let Appendix B: Comparison of $\epsilon $-greedy and Boltzmann Exploration.1Appendix B: Comparison of $\epsilon $-greedy and Boltzmann Exploration.1pdfoutline goto name{Appendix B: Comparison of $\epsilon $-greedy and Boltzmann Exploration.1}count-1{Appendix B: Comparison of -greedy and Boltzmann Exploration}let eserved@d =[def def Appendix B: Comparison of -greedy and Boltzmann Exploration{List of References}�egingroup edef protect unhbox voidb@x penalty @M {}{~}xdef Appendix B: Comparison of $\epsilon $-greedy and Boltzmann Exploration.1{List of References.1}endgroup let Appendix B: Comparison of $\epsilon $-greedy and Boltzmann Exploration.1Appendix B: Comparison of $\epsilon $-greedy and Boltzmann Exploration.1pdfoutline goto name{Appendix B: Comparison of $\epsilon $-greedy and Boltzmann Exploration.1}count-0{Appendix B: Comparison of -greedy and Boltzmann Exploration}let eserved@d =[def def Appendix B: Comparison of -greedy and Boltzmann Exploration{INITIAL DISTRIBUTION LIST}�egingroup edef protect unhbox voidb@x penalty @M {}{~}xdef Appendix B: Comparison of $\epsilon $-greedy and Boltzmann Exploration.1{section*.18}endgroup let Appendix B: Comparison of $\epsilon $-greedy and Boltzmann Exploration.1Appendix B: Comparison of $\epsilon $-greedy and Boltzmann Exploration.1pdfoutline goto name{Appendix B: Comparison of $\epsilon $-greedy and Boltzmann Exploration.1}count-1{Appendix B: Comparison of -greedy and Boltzmann Exploration}let eserved@d =[def def Appendix B: Comparison of -greedy and Boltzmann Exploration{Initial Distribution List}�egingroup edef protect unhbox voidb@x penalty @M {}{~}xdef Appendix B: Comparison of $\epsilon $-greedy and Boltzmann Exploration.1{Initial Distribution List.1}endgroup let Appendix B: Comparison of $\epsilon $-greedy and Boltzmann Exploration.1Appendix B: Comparison of $\epsilon $-greedy and Boltzmann Exploration.1pdfoutline goto name{Appendix B: Comparison of $\epsilon $-greedy and Boltzmann Exploration.1}count-0{Appendix B: Comparison of -greedy and Boltzmann Exploration}

